
A Data-Centric Introduction to Computing

Kathi Fisler, Shriram Krishnamurthi, Benjamin S. Lerner, Joe Gibbs Politz

January 25, 2022

2

Contents

I Introduction 13

1 Overview 15
1.1 What This Book is About . 15
1.2 The Values That Drive This Book 15
1.3 Our Perspective on Data . 16
1.4 What Makes This Book Unique 17
1.5 Who This Book is For . 17
1.6 The Structure of This Book . 18
1.7 Organization of the Material . 19
1.8 Our Programming Language Choice 20
1.9 Sending Feedback, Errors, and Comments 21

2 Acknowledgments 23

II Foundations 25

3 Getting Started 29
3.1 Motivating Example: Flags . 29
3.2 Numbers . 30
3.3 Expressions . 32
3.4 Terminology . 33
3.5 Strings . 34
3.6 Images . 34

Combining Images . 35
Making a Flag . 36

3.7 Stepping Back: Types, Errors, and Documentation 37
Types and Contracts . 37
Format and Notation Errors . 39

3

4 CONTENTS

Finding Other Functions: Documentation 40

4 Naming Values 43
4.1 The Definitions Pane . 43
4.2 Naming Values . 43

Names Versus Strings . 44
Expressions versus Statements 45

4.3 The Program Directory . 46
Understanding the Run Button 47

4.4 Using Names to Streamline Building Images 49

5 From Repeated Expressions to Functions 51
5.1 Example: Similar Flags . 51
5.2 Defining Functions . 52

How Functions Evaluate . 54
Type Annotations . 55
Documentation . 57

5.3 Functions Practice: Moon Weight 58
5.4 Documenting Functions with Examples 59
5.5 Functions Practice: Cost of pens 60
5.6 Recap: Defining Functions . 63

6 Conditionals and Booleans 65
6.1 Motivating Example: Shipping Costs 65
6.2 Conditionals: Computations with Decisions 66
6.3 Booleans . 67

Other Boolean Operations . 68
Combining Booleans . 71

6.4 Asking Multiple Questions . 72
6.5 Evaluating by Reducing Expressions 75
6.6 Composing Functions . 76

How Function Compositions Evaluate 77
Function Composition and the Directory 78

6.7 Nested Conditionals . 80
6.8 Recap: Booleans and Conditionals 84

7 Introduction to Tabular Data 85
7.1 Creating Tabular Data . 87
7.2 Extracting Rows and Cell Values 89
7.3 Functions over Rows . 91

CONTENTS 5

7.4 Processing Rows . 93
Finding Rows . 93
Ordering Rows . 95
Adding New Columns . 96
Calculating New Column Values 98

7.5 Examples for Table-Producing Functions 99

8 Processing Tables 103
8.1 Cleaning Data Tables . 104

Loading Data Tables . 104
Dealing with Missing Entries . 105
Normalizing Data . 108
Normalization, Systematically 111

8.2 Task Plans . 113
8.3 Preparing Data Tables . 116

Creating bins . 117
Splitting Columns . 117

8.4 Managing and Naming Data Tables 119
8.5 Visualizations and Plots . 120
8.6 Summary: Managing a Data Analysis 122

9 From Tables to Lists 125
9.1 Basic Statistical Questions . 125
9.2 Extracting a Column from a Table 126
9.3 Understanding Lists . 128

Lists as Anonymous Data . 128
Creating Literal Lists . 129

9.4 Operating on Lists . 129
Built-In Operations on Lists of Numbers 129
Built-In Operations on Lists in General 130
An Aside on Naming Conventions 131
Getting Elements By Position . 131
Transforming Lists . 133
Recap: Summary of List Operations 134

9.5 Lambda: Anonymous Functions 135
9.6 Combining Lists and Tables . 137

10 Processing Lists 141
10.1 Making Lists and Taking Them Apart 141
10.2 Some Example Exercises . 144

6 CONTENTS

10.3 Structural Problems with Scalar Answers 144
my-len: Examples . 144
my-sum: Examples . 146
From Examples to Code . 147

10.4 Structural Problems that Transform Lists 149
my-doubles: Examples and Code 150
my-str-len: Examples and Code 152

10.5 Structural Problems that Select from Lists 153
my-pos-nums: Examples and Code 154
my-alternating: Examples and Code 155

10.6 Structural Problems Over Relaxed Domains 158
my-max: Examples . 158
my-max: From Examples to Code 161

10.7 More Structural Problems with Scalar Answers 162
my-avg: Examples . 162

10.8 Structural Problems with Accumulators 164
my-running-sum: First Attempt 164
my-running-sum: Examples and Code 165
my-alternating: Examples and Code 166

10.9 Dealing with Multiple Answers 167
uniq: Problem Setup . 167
uniq: Examples . 168
uniq: Code . 169
uniq: Reducing Computation . 170
uniq: Example and Code Variations 172
uniq: Why Produce a List? . 172

10.10Monomorphic Lists and Polymorphic Types 173

11 Introduction to Structured Data 175
11.1 Understanding the Kinds of Compound Data 175

A First Peek at Structured Data 175
A First Peek at Conditional Data 176

11.2 Defining and Creating Structured and Conditional Data 177
Defining and Creating Structured Data 177
Annotations for Structured Data 178
Defining and Creating Conditional Data 179

11.3 Programming with Structured and Conditional Data 180
Extracting Fields from Structured Data 180
Telling Apart Variants of Conditional Data 181
Processing Fields of Variants . 182

CONTENTS 7

12 Collections of Structured Data 185
12.1 Lists as Collective Data . 186
12.2 Sets as Collective Data . 188

Picking Elements from Sets . 189
Computing with Sets . 190

12.3 Combining Structured and Collective Data 191
12.4 Data Design Problem: Representing Quizzes 191

13 Recursive Data 195
13.1 Functions to Process Recursive Data 197
13.2 A Template for Processing Recursive Data 202

14 Trees 205
14.1 Data Design Problem – Ancestry Data 205

Computing Genetic Parents from an Ancestry Table 206
Computing Grandparents from an Ancestry Table 208
Creating a Datatype for Ancestor Trees 209

14.2 Programs to Process Ancestor Trees 212
14.3 Summarizing How to Approach Tree Problems 213
14.4 Study Questions . 214

15 Functions as Data 217
15.1 A Little Calculus . 217
15.2 A Helpful Shorthand for Anonymous Functions 220
15.3 Streams From Functions . 220
15.4 Combining Forces: Streams of Derivatives 225

16 Interactive Games as Reactive Systems 229
16.1 About Reactive Animations . 230
16.2 Preliminaries . 231
16.3 Version: Airplane Moving Across the Screen 231

Updating the World State . 232
Displaying the World State . 233
Observing Time (and Combining the Pieces) 234

16.4 Version: Wrapping Around . 235
16.5 Version: Descending . 236

Moving the Airplane . 237
Drawing the Scene . 238
Finishing Touches . 239

16.6 Version: Responding to Keystrokes 239

8 CONTENTS

16.7 Version: Landing . 241
16.8 Version: A Fixed Balloon . 242
16.9 Version: Keep Your Eye on the Tank 244
16.10Version: The Balloon Moves, Too 246
16.11Version: One, Two, ..., Ninety-Nine Luftballons! 247

17 Examples, Testing, and Program Checking 249
17.1 From Examples to Tests . 249
17.2 More Refined Comparisons . 252
17.3 When Tests Fail . 253
17.4 Oracles for Testing . 254

III Algorithms 257

18 Predicting Growth 259
18.1 A Little (True) Story . 259
18.2 The Analytical Idea . 266
18.3 A Cost Model for Pyret Running Time 267
18.4 The Size of the Input . 268
18.5 The Tabular Method for Singly-Structurally-Recursive Functions . 268
18.6 Creating Recurrences . 270
18.7 A Notation for Functions . 272
18.8 Comparing Functions . 272
18.9 Combining Big-Oh Without Woe 274
18.10Solving Recurrences . 275

19 Sets Appeal 279
19.1 Representing Sets by Lists . 280

Representation Choices . 280
Time Complexity . 281
Choosing Between Representations 282
Other Operations . 284

19.2 Making Sets Grow on Trees . 285
Converting Values to Ordered Values 286
Using Binary Trees . 287
A Fine Balance: Tree Surgery 292

CONTENTS 9

20 Halloween Analysis 297
20.1 A First Example . 297
20.2 The New Form of Analysis . 297
20.3 An Example: Queues from Lists 298

List Representations . 298
A First Analysis . 299
More Liberal Sequences of Operations 299
A Second Analysis . 300
Amortization Versus Individual Operations 301

20.4 Reading More . 301

21 Sharing and Equality 303
21.1 Re-Examining Equality . 303
21.2 The Cost of Evaluating References 312
21.3 Notations for Equality . 313
21.4 On the Internet, Nobody Knows You’re a DAG 314
21.5 It’s Always Been a DAG . 315
21.6 From Acyclicity to Cycles . 316

22 Graphs 319
22.1 Understanding Graphs . 320
22.2 Representations . 323

Links by Name . 325
Links by Indices . 326
A List of Edges . 328
Abstracting Representations . 329

22.3 Measuring Complexity for Graphs 329
22.4 Reachability . 330

Simple Recursion . 330
Cleaning up the Loop . 332
Traversal with Memory . 332
A Better Interface . 333

22.5 Depth- and Breadth-First Traversals 334
22.6 Graphs With Weighted Edges . 335
22.7 Shortest (or Lightest) Paths . 336
22.8 Moravian Spanning Trees . 338

The Problem . 338
A Greedy Solution . 339
Another Greedy Solution . 340
A Third Solution . 340

10 CONTENTS

Checking Component Connectedness 341

IV From Pyret to Python 347

23 From Pyret to Python 349
23.1 Expressions, Functions, and Types 350
23.2 Returning Values from Functions 351
23.3 Examples and Test Cases . 352
23.4 An Aside on Numbers . 353
23.5 Conditionals . 355
23.6 Creating and Processing Lists . 356

Filters, Maps, and Friends . 356
23.7 Data with Components . 357

Accessing Fields within Dataclasses 358
23.8 Traversing Lists . 359

Introducing For Loops . 359
Using For Loops in Functions that Produce Lists 362
Summary: The List-Processing Template for Python 363

V Programming with State 365

24 Modifying Structured Data 367
24.1 Modifying Fields of Structured Data 368
24.2 Modifications to Shared Data . 369
24.3 Understanding Memory . 371
24.4 Variables and Equality . 374
24.5 Basic Data in Memory . 375

25 Modifying Variables 377
25.1 Modifying Variables in Memory 377
25.2 Modifying Variables Associated with Lists 383
25.3 Writing Functions that Modify Variables 384

The global annotation . 385
25.4 Testing Functions that Modify global Variables 386

The Internal Structure of a Test Function 390
Takeaways on Testing Modifications 390

CONTENTS 11

26 Revisiting Lists and Variables 393
26.1 Sharing List Updates . 393

Operations that Mutate Lists . 394
26.2 Lists in Memory . 395
26.3 Practice: Data for Shared Bank Accounts 399
26.4 Circular References . 403

Testing Circular Data . 406
Revisiting Variables: A Function to Create Accounts for New Cus-

tomers . 407
26.5 The Many Roles of Variables . 407
26.6 Managing All Accounts . 408

27 Hashtables and Dictionaries 411
27.1 Searching by Criteria Other than Keys 412
27.2 Dictionaries with More Complex Values 413
27.3 Using Structured Data as Keys 414

VI Advanced Topics 417

28 Algorithms That Exploit State 419
28.1 Disjoint Sets Redux . 419

Optimizations . 420
Analysis . 421

28.2 Set Membership by Hashing Redux 421
Improving Access Time . 423
Better Hashing . 424
Bloom Filters . 425

28.3 Avoiding Recomputation by Remembering Answers 426
An Interesting Numeric Sequence 426
Edit-Distance for Spelling Correction 432
Nature as a Fat-Fingered Typist 438
Dynamic Programming . 438
Contrasting Memoization and Dynamic Programming 443

VII Appendices 447

29 Pyret for Racketeers and Schemers 449
29.1 Numbers, Strings, and Booleans 451

12 CONTENTS

29.2 Infix Expressions . 452
29.3 Function Definition and Application 452
29.4 Tests . 453
29.5 Variable Names . 454
29.6 Data Definitions . 454
29.7 Conditionals . 455
29.8 Lists . 457
29.9 First-Class Functions . 458
29.10Annotations . 458
29.11What Else? . 459

30 Pyret vs. Python 461

31 Comparing This Book to HtDP 463

32 Release Notes 467

33 Glossary 469

Part I

Introduction

13

Chapter 1

Overview

1.1 What This Book is About

This book is an introduction to computer science. It will teach you to program, and
do so in ways that are of practical value and importance. However, it will also go
beyond programming to computer science, a rich, deep, fascinating, and beautiful
intellectual discipline. You will learn many useful things that you can apply right
away, but we will also show you some of what lies beneath and beyond.

Most of all, we want to give you ways of thinking about solving problems
using computation. Some of these ways are technical methods, such as working
from data and examples to construct solutions to problems. Others are scientific
methods, such as ways of making sure that programs are reliable and do what they
claim. Finally, some are social, thinking about the impacts that programs have on
people.

1.2 The Values That Drive This Book

Our perspective is guided by our decades of experience as software developers,
researchers, and educators. This has instilled in us the following beliefs:

• Software is not written only to be run. It must also be written to be read and
maintained by others. Often, that “other” person is you, six months later,
who has forgotten what they did and why.

• Programmers are responsible for their software meeting its desired goals and
being reliable. This is reflected in a variety of disciplines inside computer
science, such as testing and verification.

15

16 CHAPTER 1. OVERVIEW

• Programs ought to be be amenable to prediction. We need to know, as much
as possible, before a program runs, how it will behave. This behavior in-
cludes not only technical characteristics such as running time, space, power,
and so on, but also social impacts, benefits, and harms. Programmers have
been notoriously poor at thinking about the latter.

1.3 Our Perspective on Data

These concerns intersect with our belief about how computer science has evolved
as a discipline. It is a truism that we live in a world awash with data, but what
consequence does that have?

At a computational level, data have had a profound effect. Traditionally, the
only way to make a program better was to improve the program directly, which of-
ten meant making it more complicated and impacting the values we discuss above.
But there are classes of programs for which there is another method: simply give
the same program more or better data, and the program can improve. These data-
driven programs lie at the heart of many innovations we see around us.

In addition to this technical effect, data can have a profound pedagogic im-
pact, too. Most introductory programming is plagued by artificial data that have
no real meaning, interest, or consequence (and often, artificial problems to ac-
company them). With real data, learners can personalize their education, focusing
on problems they find meaningful, enriching, or just plain fun—asking and an-
swering questions they find worthwhile. Indeed, from this perspective, programs
interrogate data: that is, programs are tools for answering questions. In turn, the
emphasis on real data and real questions enables us to discuss the social impacts of
computing.

These phenomena have given rise to whole new areas of study, typically called
data science. However, typical data science curricula also have many limitations.
They pay little attention to what we know about the difficulties of learning to pro-
gram. They have little emphasis on software reliability. And they fail to recognize
that their data are often quite limited in their structure. These limitations, where
data science typically ends, are where computer science begins. In particular, the
structure of data serve as a point of departure for thinking about and achieving
some of the values above—performance, reliability, and predictability—using the
many tools of computer science.

1.4. WHAT MAKES THIS BOOK UNIQUE 17

1.4 What Makes This Book Unique

First, we propose a new perspective on structuring computing curricula, which we
call data centricity. We view a data-centric curriculum as For more about this, read our

essay.

data centric = data science + data structures

in that order: we begin with ideas from data science, before shifting to classical
ideas from data structures and the rest of computer science. This book lays out this
vision concretely and in detail.

Second, computing education talks a great deal about notional machines—
abstractions of program behavior meant to help students understand how programs
work—but few curricula actually use one. We take notional machines seriously,
developing a sequence of them and weaving them through the curriculum. This
ties to our belief that programs are not only objects that run, but also objects that
we reason about.

Third, we weave content on socially-responsible computing into the text. Un-
like other efforts that focus on exposing students to ethics or the pitfalls of technol-
ogy in general, we aim to show students how the constructs and concepts that they
are turning into code right now can lead to adverse impacts unless used with care.
In keeping with our focus on testing and concrete examples, we introduce several
topics by getting students to think about assumptions at the level of concrete data.
This material is called out explicitly throughout the book.

Finally, this book is deeply informed by recent and ongoing research results.
Our choices of material, order of presentation, programming methods, and more
are driven by what we know from the research literature. In many cases, we our-
selves are the ones doing the research, so the curriculum and research live in a
symbiotic relationship. You can find our papers (some with each other, others not)
on our respective pages.

1.5 Who This Book is For

This book is written primarily for students who are in the early stages of computing
education at the tertiary level (college or university). However, many—especially
the earlier—parts of it are also suitable for secondary education (in the USA, for
instance, roughly grades 6–12, or ages 12–18). Indeed, we see a natural continuum
between secondary and tertiary education, and think this book can serve as a useful
bridge between the two.

https://cs.brown.edu/~sk/Publications/Papers/Published/kf-data-centric/
https://cs.brown.edu/~sk/Publications/Papers/Published/kf-data-centric/
https://cs.brown.edu/~kfisler/Pubs/index.html
https://cs.brown.edu/~sk/Publications/Papers/Published/
https://www.ccs.neu.edu/home/blerner/papers.html
https://jpolitz.github.io

18 CHAPTER 1. OVERVIEW

1.6 The Structure of This Book

Unlike some other textbooks, this one does not follow a top-down narrative. Rather
it has the flow of a conversation, with backtracking. We will often build up pro-
grams incrementally, just as a pair of programmers would. We will include mis-
takes, not because we don’t know better, but because this is the best way for you to
learn. Including mistakes makes it impossible for you to read passively: you must
instead engage with the material, because you can never be sure of the veracity of
what you’re reading.

At the end, you’ll always get to the right answer. However, this non-linear path
is more frustrating in the short term (you will often be tempted to say, “Just tell
me the answer, already!”), and it makes the book a poor reference guide (you can’t
open up to a random page and be sure what it says is correct). However, that feeling
of frustration is the sensation of learning. We don’t know of a way around it.

We use visual formatting to higlight some of these points. Thus, in several
places you will encounter this:

Exercise

This is an exercise. Do try it.

This is a traditional textbook exercise. It’s something you need to do on your
own. If you’re using this book as part of a course, this may very well have been
assigned as homework. In contrast, you will also find exercise-like questions that
look like this:

Do Now!

There’s an activity here! Do you see it?

When you get to one of these, stop. Read, think, and formulate an answer
before you proceed. You must do this because this is actually an exercise, but
the answer is already in the book—most often in the text immediately following
(i.e., in the part you’re reading right now)—or is something you can determine for
yourself by running a program. If you just read on, you’ll see the answer without
having thought about it (or not see it at all, if the instructions are to run a program),
so you will get to neither (a) test your knowledge, nor (b) improve your intuitions.
In other words, these are additional, explicit attempts to encourage active learning.
Ultimately, however, we can only encourage it; it’s up to you to practice it.

Specific strategies for program design and development get highlighted in boxes
that look like this:

1.7. ORGANIZATION OF THE MATERIAL 19

Strategy: How to ...

here’s a summary of how to do something.

Finally, we also call out content on socially-responsible computing with visu-
ally distinctive regions like this:

Responsible Computing: Did you consider ...

Here are social pitfalls from using material naively.

1.7 Organization of the Material

This book contains four parts:

1. part II: A introduction to programming for beginners that teaches program-
ming and rudimentary data analysis. It introduces core programming con-
cepts through composing images and processing tables, before covering lists,
trees, and writing reactive programs, all through a data-centric lens. The no-
tional machine throughout this section is based on substitution.

2. part III: Covers asymptotic complexity, recurrences, and fundamental graph
algorithms.

3. part V: Covers working with mutable variables and mutable structured data,
building up to understanding (and working with) mutable lists and hashta-
bles. This section transitions to Python. It extends testing to cover the
nuances of programs with mutation. The notional machine in this section
separate the naming environment (here called the directory) from a heap of
structured data values.

4. part VI: Returns to algorithms topics that build on an understanding of state
and stateful data structures.

These parts have been carefully crafted to make sure there are no dependencies
from part III to part V. This allows flexibility in offering several different kinds of
courses. For instance, we already offer two very different courses by remixing this
material, which others could follow:

• An introductory course can use part II and part V (without part III) to cover
the data-centric view of computer science and leaving students with basic
skills in Python.

20 CHAPTER 1. OVERVIEW

• A more advanced course that assumes students already know some begin-
ning functional programming (e.g., from the early parts of How to Design
Programs) could start directly in part III, perhaps with select sections of
part II either to cover missing material (such as working with tables). This
course could continue into part V, followed by part VI.

These correspond, respectively, to CSCI 0111 and CSCI 0190 at Brown Uni-
versity. The course pages archive all prior instances of the courses, which include
all the assignments and related materials. Readers are welcome to use these in their
own courses.

Many of these courses will have entering students who have programmed with
state before (in Python, Java, Scratch, or other languages). In our experience, most
of these students have been given either vastly incomplete, or outright misleading,
explanations of and metaphors for state (e.g., “a variable is a box”). Thus, they
have a poor understanding of it beyond the absolute basics, especially when they
get to important topics like aliasing. As a result, many of these students have found
it both novel and insightful to properly understand how state really works through
our notional machine. For that reason, we recommend going through that material
slowly and carefully.

We of course invite readers to create their own mashups of the chapters within
the sections. We would love to hear about others’ designs.

1.8 Our Programming Language Choice

If we wanted to get rich, we’d have written this book entirely in Python. As of
this writing, Python is enjoying its instructional-use heyday (just like Java before
it, C++ before that, C before that, Pascal earlier, and so on). And there are, indeed,
many attractive aspects of Python, not least its presence next to bullet points on
job listings. However, we’ve been repeatedly frustrated by Python as an entrypoint
into learning programming.

As a result, this book features two programming languages. It starts with a
language, called Pyret, that we designed to address our needs and frustrations.
It has been expressly designed for the style of programming in this book, so the
two can grow in harmony. It draws on Python, but also on many other excellent
programming languages. Beginning programmers can therefore rest in the knowl-
edge they are being cared for, while programmers with past acquaintance of the
language menagerie, from serpents to dromedaries, should find Pyret familiar and
comfortable.

Then, recognizing the value of Python both as a standard language of com-
munication and for its extensive libraries, the part V part of this book explicitly

https://htdp.org/
https://htdp.org/
https://cs.brown.edu/courses/csci0111/
https://cs.brown.edu/courses/csci0190/
https://www.pyret.org/

1.9. SENDING FEEDBACK, ERRORS, AND COMMENTS 21

covers Python. Rather than starting from scratch in Python, we present a system-
atic and gradual transition to it from the earlier material. We believe this will make
you learn general programming better than if you had seen only one programming
language. However, we believe this will help you understand Python better, too:
just like you learn to appreciate your own language, country, or culture better once
you’ve stepped outside and been exposed to other ones.

1.9 Sending Feedback, Errors, and Comments

As you work through the book, you may spot typos, notice points where we could
have been clearer, or have a suggestion for a future release. You can pass these
along to us by filing an issue on our public GitHub site. Thanks in advance!

https://github.com/data-centric-computing/dcic-public

22 CHAPTER 1. OVERVIEW

Chapter 2

Acknowledgments

This book has benefited from the attention of many.
Special thanks to the students at Brown University, who have been drafted into

acting as a crucible for every iteration of this book. They have supported it with
unusual grace, creating a welcoming and rewarding environment for pedagogic
effort. Thanks also to our academic homes—Brown, Northeastern, and UC San
Diego—for comfort and encouragement.

The following people have helpfully provided information on typos and other
infelicities:

Abhabongse Janthong, Alex Kleiman, Athyuttam Eleti, Benjamin S.
Shapiro, Cheng Xie, Danil Braun, Dave Lee, Doug Kearns, Ebube
Chuba, Harrison Pincket, Igor Moreno Santos, Iuliu Balibanu, Ja-
son Bennett, John (Spike) Hughes, Jon Sailor, Josh Paley, Kelechi
Ukadike, Kendrick Cole, Marc Smith, Michael Morehouse, Rafał Gwoźdz-
iński, Raymond Plante, Samuel Ainsworth, Samuel Kortchmar, Noah
Tye, frodokomodo (on github).

The following have done the same, but in much greater quantity or depth:

Dorai Sitaram, John Palmer, Kartik Singhal, Kenichi Asai, Lev Litichevskiy.

Even amongst the problem-spotters, one is hors catégorie:

Sorawee Porncharoenwase.

This book is completely dependent on Pyret, and thus on the many people who
have created and sustained it.

We thank Matthew Butterick for his help with book styling (though the ultimate
style is ours, so don’t blame him!).

23

https://www.pyret.org/crew/
https://practicaltypography.com/

24 CHAPTER 2. ACKNOWLEDGMENTS

Many, many years ago, Alejandro Schäffer introduced SK to the idea of nature
as a fat-fingered typist. Alejandro’s fingerprints are over many parts of this book,
even if he wouldn’t necessarily approve of what has come of his patient instruction.

We are deeply inspired by the work and ideas of Matthias Felleisen, Matthew
Flatt, and Robby Findler. Matthias, in particular, inspired our ideas on program
design. Even where we disagree, he continues to engage with and challenge our
ideas in ways that force us to grow and improve. Our work is better than it would
be in incalculable ways due to his influence.

The chapter on chapter 16 is translated from How to Design Worlds, and owes
thanks to all the people acknowledged there.

This book is written in Scribble, the authoring tool of choice for the discerning
programmer.

We thank cloudconvert for their free conversion tools.

https://world.cs.brown.edu/
https://docs.racket-lang.org/scribble/
https://cloudconvert.com/

Part II

Foundations

25

Contents

27

28 CONTENTS

Chapter 3

Getting Started

3.1 Motivating Example: Flags

Imagine that you are starting a graphic design company, and want to be able to
create images of flags of different sizes and configurations for your customers.
The following diagram shows a sample of the images that your software will have
to help you create:

Before we try to write code to create these different images, you should step
back, look at this collection of images, and try to identify features of the images
that might help us decide what to do. To help with this, we’re going to answer a
pair of specific questions to help us make sense of the images:

• What do you notice about the flags?

• What do you wonder about the flags or a program that might produce them?

Do Now!

Actually write down your answers. Noticing features of data and information
is an essential skill in computing.

29

30 CHAPTER 3. GETTING STARTED

Some things you might have noticed:

• Some flags have similar structure, just with different colors

• Some flags come in different sizes

• Some flags have poles

• Most of these look pretty simple, but some real flags have complicated fig-
ures on them

. . . and so on.
Some things you might have wondered:

• Do I need to be able to draw these images by hand?

• Will we be able to generate different sized flags from the same code?

• What if we have a non-rectangular flag?

. . . and so on.
The features that we noticed suggest some things we’ll need to be able to do to

write programs to generate flags:

• We might want to compute the heights of the stripes from the overall flag
dimensions (we’ll write programs using numbers)

• We need a way to describe colors to our program (we’ll learn strings)

• We need a way to create images based on simple shapes of different colors
(we’ll create and combine expressions)

Let’s get started!

3.2 Numbers

Start simple: compute the sum of 3 and 5.
To do this computation with a computer, we need to write down the compu-

tation and ask the computer to run or evaluate the computation so that we get a
number back. A software or web-application in which you write and run programs
is called a programming environment. In the first part of this course, we will use a
language called Pyret.

Go to the on-line editor (which we’ll henceforth refer to as “CPO”). For now,
we will work only in the right-hand side (the interactions pane).

The ››› is called the “prompt”—that’s where we tell CPO to run a program.
Let’s tell it to add 3 and 5. Here’s what we write:

https://code.pyret.org/editor

3.2. NUMBERS 31

››› 3 + 5

Press the Return key, and the result of the computation will appear on the line
below the prompt, as shown below:

››› 3 + 5

8

Not surprisingly, we can do other arithmetic computations

››› 2 * 6

12

(Note: * is how we write the multiplication sign.)
What if we try 3 + 4 * 5?

Do Now!

Try it! See what Pyret says.

Pyret gave you an error message. What it says is that Pyret isn’t sure whether
we mean

(3 + 4) * 5

or

3 + (4 * 5)

so it asks us to include parentheses to make that explicit. Every programming
language has a set of rules about how you have to write down programs. Pyret’s
rules require parentheses to avoid ambiguity.

››› (3 + 4) * 5

35

››› 3 + (4 * 5)

23

Another Pyret rule requires spaces around the arithmetic operators. See what
happens if you forget the spaces:

32 CHAPTER 3. GETTING STARTED

››› 3+4

Pyret will show a different error message that highlights the part of the code
that isn’t formatted properly, along with an explanation of the issue that Pyret has
detected. To fix the error, you can press the up-arrow key within the right pane and
edit the previous computation to add the spaces.

Do Now!

Try doing it right now, and confirm that you succeeded!

What if we want to get beyond basic arithmetic operators? Let’s say we want
the minimum of two numbers. We’d write this as

››› num-min(2, 8)

Why num-? It’s because
“minimum” is a concept that
makes sense on data other than
numbers; Pyret calls the min
operator num-min to avoid
ambiguity.

3.3 Expressions

Note that when we run num-min, we get a number in return (as we did for +, *, . . .).
This means we should be able to use the result of num-min in other computations
where a number is expected:

››› 5 * num-min(2, 8)

10

››› (1 + 5) * num-min(2, 8)

12

Hopefully you are starting to see a pattern. We can build up more complicated
computations from smaller ones, using operations to combine the results from the
smaller computations. We will use the term expression to refer a computation
written in a format that Pyret can understand and evaluate to an answer.

3.4. TERMINOLOGY 33

Exercise

In CPO, try to write the expressions for each of the following computations:

• subtract 3 from 7, then multiply the result by 4

• subtract 3 from the multiplication of 7 and 4

• the sum of 3 and 5, divided by 2

• the max of 5 - 10 and -20

• 2 divided by the sum of 3 and 5

Do Now!

What if you get a fraction as a response?
If you’re not sure how to get a fraction, there are two ways: you can either

write an expression that produces a fractional answer, or you can type one in
directly (e.g., 1/3).

Either way, you can click on the result in the interactions pane to change
how the number is presented. Try it!

3.4 Terminology

Look at an interaction like

››› (3 + 4) * (5 + 1)

42

There are actually several kinds of information in this interaction, and we
should give them names:

• Expression: a computation written in the formal notation of a programming
language

Examples here include 4, 5 + 1, and (3 + 4) * (5 + 1)

• Value: a expression that can’t be computed further (it is its own result)

So far, the only values we’ve seen are numbers.

• Program: a sequence of expressions that you want to run

34 CHAPTER 3. GETTING STARTED

3.5 Strings

What if we wanted to write a program that used information other than numbers,
such as someone’s name? For names and other text-like data, we use what are
called strings. Here are some examples:

"Kathi"

"Go Bears!"

"CSCI0111"

"Carberry, Josiah"

What do we notice? Strings can contain spaces, punctuation, and numbers. We
use them to capture textual data. For our flags example, we’ll use strings to name
colors: "red", "blue", etc.

Note that strings are case-sensitive, meaning that capitalization matters (we’ll
see where it matters shortly).

3.6 Images

We have seen two kinds of data: numbers and strings. For flags, we’ll also need
images. Images are different from both numbers and strings (you can’t describe
an entire image with a single number—well, not unless you get much farther into
computer science but let’s not get ahead of ourselves).

Pyret has built-in support for images. When you start up Pyret, you’ll see
a grayed-out line that says “use context essentials2021” (or something similar).
This line configures Pyret with some basic functionality beyond basic numbers
and strings.

Do Now!

Press the “Run” button (to activate the features in essentials), then write each
of these Pyret expressions at the interactions prompt to see what they pro-
duce:

• circle(30, "solid", "red")

• circle(30, "outline", "blue")

• rectangle(20, 10, "solid", "purple")

Each of these expressions names the shape to draw, then configures the shape
in the parentheses that follow. The configuration information consists of the shape

3.6. IMAGES 35

dimensions (the radius for circles, the width and height for rectangles, both mea-
sured in screen pixels), a string indicating whether to make a solid shape or just an
outline, then a string with the color to use in drawing the shape.

Which shapes and colors does Pyret know about? Hold this question for just a
moment. We’ll show you how to look up information like this in the documentation
shortly.

Combining Images

Earlier, we saw that we could use operations like + and * to combine numbers
through expressions. Any time you get a new kind of datum in programming, you
should ask what operations the language gives you for working with that data. In
the case of images in Pyret, the collection includes the ability to:

• rotate them

• scale them

• flip them

• put two of them side by side

• place one on top of the other

• and more ...

Let’s see how to use some of these.

Exercise

Type the following expressions into Pyret:

rotate(45, rectangle(20, 30, "solid", "red"))

What does the 45 represent? Try some different numbers in place of the
45 to confirm or refine your hypothesis.

overlay(circle(25, "solid", "yellow"),

rectangle(50, 50, "solid", "blue"))

Can you describe in prose what overlay does?

above(circle(25, "solid", "red"),

rectangle(30, 50, "solid", "blue"))

What kind of value do you get from using the rotate or above opera-
tions? (hint: your answer should be one of number, string, or image)

36 CHAPTER 3. GETTING STARTED

These examples let us think a bit deeper about expressions. We have simple
values like numbers and strings. We have operations or functions that combine
values, like + or rotate (“functions” is the term more commonly used in comput-
ing, whereas your math classes likely used “operations”). Every function produces
a value, which can be used as input to another function. We build up expressions
by using values and the outputs of functions as inputs to other functions.

For example, we used above to create an image out of two smaller images. We
could take that image and rotate it using the following expression.

rotate(45,

above(circle(25, "solid", "red"),

rectangle(30, 50, "solid", "blue")))

This idea of using the output of one function as input to another is known as
composition. Most interesting programs arise from composing results from one
computation with another. Getting comfortable with composing expressions is an
essential first step in learning to program.

Exercise

Try to create the following images:

• a blue triangle (you pick the size). As with circle, there is a triangle
function that takes a side length, fill style, and color and produces an
image of an equilateral triangle.

• a blue triangle inside a yellow rectangle

• a triangle oriented at an angle

• a bullseye with 3 nested circles aligned in their centers (e.g., the Target
logo)

• whatever you want—play around and have fun!

The bullseye might be a bit challenging. The overlay function only takes
two images, so you’ll need to think about how to use composition to layer
three circles.

Making a Flag

We’re ready to make our first flag! Let’s start with the flag of Armenia, which has
three horizontal stripes: red on top, blue in the middle, and orange on the bottom.

https://www.target.com/

3.7. STEPPING BACK: TYPES, ERRORS, AND DOCUMENTATION 37

Exercise

Use the functions we have learned so far to create an image of the Armenian
flag. You pick the dimensions (we recommend a width between 100 and
300).

Make a list of the questions and ideas that occur to you along the way.

3.7 Stepping Back: Types, Errors, and Documentation

Now that you have an idea of how to create a flag image, let’s go back and look
a bit more carefully at two concepts that you’ve already encountered: types and
error messages.

Types and Contracts

Now that we are composing functions to build more complicated expressions out
of smaller ones, we will have to keep track of which combinations make sense.
Consider the following sample of Pyret code:

8 * circle(25, "solid", "red")

What value would you expect this to produce? Multiplication is meant to work
on numbers, but this code asks Pyret to multiply a number and an image. Does this
even make sense?

This code does not make sense, and indeed Pyret will produce an error message
if we try to run it.

Do Now!

Try to run that code, then look at the error message. Write down the informa-
tion that the error message is giving you about what went wrong (we’ll come
back to your list shortly).

The bottom of the error message says:
The * operator expects to be given two Numbers
Notice the word “Numbers”. Pyret is telling you what kind of information

works with the * operation. In programming, values are organized into types (e.g.,
number, string, image). These types are used in turn to describe what kind of inputs
and results (a.k.a., outputs) a function works with. For example, * expects to be
given two numbers, from which it will return a number. The last expression we
tried violated that expectation, so Pyret produced an error message.

38 CHAPTER 3. GETTING STARTED

Talking about “violating expectations” sounds almost legal, doesn’t it? It does,
and the term contract refers to the required types of inputs and promised types
of outputs when using a specific function. Here are several examples of Pyret
contracts (written in the notation you will see in the documentation):

* :: (x1 :: Number, x2 :: Number) -> Number

circle :: (radius :: Number,

mode :: String,

color :: String) -> Image

rotate :: (degrees :: Number,

img :: Image) -> Image

overlay :: (upper-img :: Image,

lower-img :: Image) -> Image

Do Now!

Look at the notation pattern across these contracts. Can you label the various
parts and what information they appear to be giving you?

Let’s look closely at the overlay contract to make sure you understand how to
read it. It gives us several pieces of information:

• There is a function called overlay

• It takes two inputs (the parts within the parentheses), both of which have the
type Image

• The first input is the image that will appear on top

• The second input is the image that will appear on the bottom

• The output from calling the function (which follows ->) will have type
Image

In general, we read the double-colon (::) as “has the type”. We read the arrow
(->) as “returns”.

Whenever you compose smaller expressions into more complex expressions,
the types produced by the smaller expressions have to match the types required
by the function you are using to compose them. In the case of our erroneous *

3.7. STEPPING BACK: TYPES, ERRORS, AND DOCUMENTATION 39

expression, the contract for * expects two numbers as inputs, but we gave an image
for the second input. This resulted in an error message when we tried to run the
expression.

A contract also summarizes how many inputs a function expects. Look at the
contract for the circle function. It expects three inputs: a number (for the radius),
a string (for the style), and a string (for the color). What if we forgot the style
string, and only provided the radius and color, as in:

circle(100, "purple")

The error here is not about the type of the inputs, but rather about the number
of inputs provided.

Exercise

Run some expressions in Pyret that use an incorrect type for some input to
a function. Run others where you provide the wrong number of inputs to a
function.

What text is common to the incorrect-type errors? What text is common
to the wrong numbers of inputs?

Take note of these so you can recognize them if they arise while you are
programming.

Format and Notation Errors

We’ve just seen two different kinds of mistakes that we might make while pro-
gramming: providing the wrong type of inputs and providing the wrong number of
inputs to a function. You’ve likely also run into one additional kind of error, such
as when you make a mistake with the punctuation of programming. For example,
you might have typed an example such as these:

• 3+7

• circle(50 "solid" "red")

• circle(50, "solid, "red")

• circle(50, "solid," "red")

• circle 50, "solid," "red")

40 CHAPTER 3. GETTING STARTED

Do Now!

Make sure you can spot the error in each of these! Evaluate these in Pyret if
necessary.

You already know various punctuation rules for writing prose. Code also has
punctuation rules, and programming tools are strict about following them. While
you can leave out a comma and still turn in an essay, a programming environment
won’t be able to evaluate your expressions if they have punctuation errors.

Do Now!

Make a list of the punctuation rules for Pyret code that you believe you’ve
encountered so far.

Here’s our list:

• Spaces are required around arithmetic operators.

• Parentheses are required to indicate order of operations.

• When we use a function, we put a pair of parentheses around the inputs, and
we separate the inputs with commas.

• If we use a double-quotation mark to start a string, we need another double-
quotation mark to close that string.

In programming, we use the term syntax to refer to the rules of writing proper
expressions (we explicitly didn’t say “rules of punctuation” because the rules go
beyond what you think of as punctuation, but that’s a fair place to start). Making
mistakes in your syntax is common at first. In time, you’ll internalize the rules. For
now, don’t get discouraged if you get errors about syntax from Pyret. It’s all part
of the learning process.

Finding Other Functions: Documentation

At this point, you may be wondering what else you can do with images. We men-
tioned scaling images. What other shapes might we make? Is there a list some-
where of everything we can do with images?

Every programming language comes with documentation, which is where you
find out the various operations and functions that are available, and your options
for configuring their parameters. Documentation can be overwhelming for novice

3.7. STEPPING BACK: TYPES, ERRORS, AND DOCUMENTATION 41

programmers, because it contains a lot of detail that you don’t even know that you
need just yet. Let’s take a look at how you can use the documentation as a beginner.

Open the Pyret Image Documentation. Focus on the sidebar on the left. At
the top, you’ll see a list of all the different topics covered in the documentation.
Scroll down until you see “rectangle” in the sidebar: surrounding that, you’ll see
the various function names you can use to create different shapes. Scroll down a bit
further, and you’ll see a list of functions for composing and manipulating images.

If you click on a shape or function name, you’ll bring up details on using
that function in the area on the right. You’ll see the contract in a shaded box, a
description of what the function does (under the box), and then a concrete example
or two of what you type to use the function. You could copy and paste any of the
examples into Pyret to see how they work (changing the inputs, for example).

For now, everything you need documentation wise is in the section on images.
We’ll go further into Pyret and the documentation as we go.

https://www.pyret.org/docs/latest/image.html

42 CHAPTER 3. GETTING STARTED

Chapter 4

Naming Values

4.1 The Definitions Pane

So far, we have only used the interactions pane on the right half of the CPO screen.
As we have seen, this pane acts like a calculator: you type an expression at the
prompt and CPO produces the result of evaluating that expression.

The left pane is called the definitions pane. This is where you can put code that
you want to save to a file. It has another use, too: it can help you organize your
code as your expressions get larger.

4.2 Naming Values

The expressions that create images involve a bit of typing. It would be nice to have
shorthands so we can “name” images and refer to them by their names. This is what
the definitions pane is for: you can put expressions and programs in the definitions
pane, then use the “Run” button in CPO to make the definitions available in the
interactions pane.

Do Now!

Put the following in the definitions pane:

red-circ = circle(30, "solid", "red")

Hit run, then enter red-circ in the interactions pane. You should see the
red circle.

More generally, if you write code in the form:

NAME = EXPRESSION

43

44 CHAPTER 4. NAMING VALUES

Pyret will associate the value of EXPRESSION with NAME. Anytime you write
the (shorthand) NAME, Pyret will automatically (behind the scenes) replace it with
the value of EXPRESSION. For example, if you write x = 5 + 4 at the prompt,
then write x, CPO will give you the value 9 (not the original 5 + 4 expression).

What if you enter a name at the prompt that you haven’t associated with a
value?

Do Now!

Try typing puppy at the interactions pane prompt (›››). Are there any terms
in the error message that are unfamiliar to you?

CPO (and indeed many programming tools) use the phrase “unbound identifier”
when an expression contains a name that has not been associated with (or bound
to) a value.

Names Versus Strings

At this point, we have seen words being used in two ways in programming: (1) as
data within strings and (2) as names for values (also called identifiers). These are
two very different uses, so it is worth reviewing them.

• Syntactically (another way of saying “in terms of how we write it”), we
distinguish strings and names by the presence of double quotation marks.
Note the difference between puppy and "puppy".

• Strings can contain spaces, but names cannot. For example, "hot pink" is
a valid piece of data, but hot pink is not a single name. When you want
to combine multiple words into a name (like we did above with red-circ),
use a hyphen to separate the words while still having a single name (as a
sequence of characters). Different programming languages allow different
separators; for Pyret, we’ll use hyphens.

• Entering a word as a name versus as a string at the interactions prompt
changes the computation that you are asking Pyret to perform. If you en-
ter puppy (the name, without double quotes), you are asking Pyret to lookup
the value that you previously stored under that name. If you enter "puppy"
(the string, with double quotes) you are simply writing down a piece of data
(akin to typing a number like 3): Pyret returns the value you entered as the
result of the computation.

• If you enter a name that you have not previously associated with a value,
Pyret will give you an “unbound identifier” error message. In contrast, since

4.2. NAMING VALUES 45

strings are just data, you won’t get an error for writing a previously-unused
string (there are some special cases of strings, such as when you want to put
a quotation mark inside them, but we’ll set that aside for now).

Novice programmers frequently confuse names and strings at first. For now, re-
member that the names you associate with values using = cannot contain quotation
marks, while word- or text-based data must be wrapped in double quotes.

Expressions versus Statements

Definitions and expressions are two useful aspects of programs, each with their
own role. Definitions tell Pyret to associate names with values. Expressions tell
Pyret to perform a computation and return the result.

Exercise

Enter each of the following at the interactions prompt:

• 5 + 8

• x = 14 + 16

• triangle(20, "solid", "purple")

• blue-circ = circle(x, "solid", "blue")

The first and third are expressions, while the second and fourth are defini-
tions. What do you observe about the results of entering expressions versus
the results of entering definitions?

Hopefully, you notice that Pyret doesn’t seem to return anything from the def-
initions, but it does display a value from the expressions. In programming, we
distinguish expressions, which yield values, from statements, which don’t yield
values but instead give some other kind of instruction to the language. So far,
definitions are the only kinds of statements we’ve seen.

Exercise

Assuming you still have the blue-circ definition from above in your inter-
actions pane, enter blue-circ at the prompt (you can re-enter that definition
if it is no longer there).

Based on what Pyret does in response, is blue-circ an expression or a
definition?

46 CHAPTER 4. NAMING VALUES

Since blue-circ yielded a result, we infer that a name by itself is also an
expression. This exercise highlights the difference between making a definition
and using a defined name. One produces a value while the other does not. But
surely something must happen, somewhere, when you run a definition. Otherwise,
how could you use that name later?

4.3 The Program Directory

Programming tools do work behind the scenes as they run programs. Given the
program 2 + 3, for example, a calculation takes place to produce 5, which in turn
displays in the interactions pane.

When you write a definition, Pyret makes an entry in an internal directory in
which it associates names with values. You can’t see the directory, but Pyret uses
it to manage the values that you’ve associated with names. If you write:

width = 30

Pyret makes a new directory entry for width and records that width has value 30.
If you then write

height = width * 3

Pyret evaluates the expression on the right side (width * 3), then stores the re-
sulting value (here, 90) alongside height in the directory.

How does Pyret evaluate (width * 3)? Since width is a word (not a string),
Pyret looks up its value in the directory. Pyret substitutes that value for the name
in the expression, resulting in 30 * 3, which then evaluates to 90. After running
these two expressions, the directory looks like:
Directory

• width

→

30

• height

→

90

4.3. THE PROGRAM DIRECTORY 47

Note that the entry for height in the directory has the result of width * 3, not
the expression. This will become important as we use named values to prevent us
from doing the same computation more than once.

The program directory is an essential part of how programs evaluate. If you
are trying to track how your program is working, it sometimes helps to track the
directory contents on a sheet of paper (since you can’t view Pyret’s directory).

Exercise

Imagine that you have the following code in the definitions pane when you
press the Run button:

name = "Matthias"

"name"

What appears in the interactions pane? How does each of these lines interact
with the program directory?

Exercise

What happens if you enter a subsequent definition for the same name, such
as width = 50? How does Pyret respond? What if you then ask to see the
value associated with this same name at the prompt? What does this tell you
about the directory?

When you try to give a new value to a name that is already in the directory, Pyret
will respond that the new definition "shadows a previous declaration" of that same
name. This is Pyret’s way of warning you that the name is already in the directory.
If you ask for the value associated with the name again, you’ll see that it still has the
original value. Pyret doesn’t let you change the value associated with an existing
name with the name = value notation. While there is a notation that will let you
reassign values, we won’t work with this concept until chapter 25.

Understanding the Run Button

Now that we’ve learned about the program directory, let’s us discuss what happens
when you press the Run button. Let’s assume the following contents are in the
defintions pane:

width = 30

height = width * 3

blue-rect = rectangle(width, height, "solid", "blue")

48 CHAPTER 4. NAMING VALUES

When you press Run, Pyret first clears out the program directory. It then processes
your file line by line, starting at the top. If you have an include statement, Pyret
adds the definitions from the included library to the directory. After processing all
of the lines for this program, the directory will look like:

Directory

• circle

→<the circle operation>

• rectangle

→<the rectangle operation>

• ...

• width

→

30

• height

→

90

• blue-rect

→<the actual rectangle image>

If you now type at the interactions prompt, any use of an identifier (a sequence
of characters not enclosed in quotation marks) results in Pyret consulting the direc-
tory.

If you now type

beside(blue-rect, rectangle(20, 20, "solid", "purple"))

Pyret will look up the image associated with blue-rect.

4.4. USING NAMES TO STREAMLINE BUILDING IMAGES 49

Do Now!

Is the purple rectangle in the directory? What about the image with the two
rectangles?

Neither of these shapes is in the directory. Why? We didn’t ask Pyret to store
them there with a name. What would be different if we instead wrote the following
(at the interactions prompt)?

two-rects = beside(blue-rect, rectangle(20, 20, "solid", "purple"))

Now, the two-shape image would be in the directory, associated with the name
two-rects. The purple rectangle by itself, however, still would not be stored in
the dictionary. We could, however, reference the two-shape image by name, as
shown below:

Do Now!

Imagine that we now hit the Run button again, then typed two-rects at the
interactions prompt. How would Pyret respond and why?

4.4 Using Names to Streamline Building Images

The ability to name values can make it easier to build up complex expressions.
Let’s put a rotated purple triangle inside a green square:

overlay(rotate(45, triangle(30, "solid", "purple")),

rectangle(60, 60, "solid", "green"))

However, this can get quite difficult to read and understand. Instead, we can
name the individual shapes before building the overall image:

purple-tri = triangle(30, "solid", "purple")

green-sqr = rectangle(60, 60, "solid", "green")

50 CHAPTER 4. NAMING VALUES

overlay(rotate(45, purple-tri),

green-sqr)

In this version, the overlay expression is quicker to read because we gave
descriptive names to the initial shapes.

Go one step further: let’s add another purple-triangle on top of the existing
image:

purple-tri = triangle(30, "solid", "purple")

green-sqr = rectangle(60, 60, "solid", "green")

above(purple-tri,

overlay(rotate(45, purple-tri),

green-sqr))

Here, we see a new benefit to leveraging names: we can use purple-tri twice
in the same expression without having to write out the longer triangle expression
more than once.

Exercise

Assume that your definitions pane contained only this most recent code ex-
ample (including the purple-tri and green-sqr definitions). How many
separate images would appear in the interactions pane if you pressed Run?
Do you see the purple triangle and green square on their own, or only com-
bined? Why or why not?

Exercise

Re-write your expression of the Armenian flag (from section 3.6.2), this time
giving intermediate names to each of the stripes.

In practice, programmers don’t name every individual image or expression re-
sult when creating more complex expressions. They name ones that will get used
more than once, or ones that have particular significance for understanding their
program. We’ll have more to say about naming as our programs get more compli-
cated.

Chapter 5

From Repeated Expressions to
Functions

5.1 Example: Similar Flags

Consider the following two expressions to draw the flags of Armenia and Austria
(respectively). These two countries have the same flag, just with different colors.
The frame operator draws a small black frame around the image.

Lines starting with # are comments for human readers.

Pyret ignores everything on a line after #.

armenia

frame(

above(rectangle(120, 30, "solid", "red"),

above(rectangle(120, 30, "solid", "blue"),

rectangle(120, 30, "solid", "orange"))))

austria

frame(

above(rectangle(120, 30, "solid", "red"),

above(rectangle(120, 30, "solid", "white"),

rectangle(120, 30, "solid", "red"))))

Rather than write this program twice, it would be nice to write the common
expression only once, then just change the colors to generate each flag. Concretely,
we’d like to have a custom operator such as three-stripe-flag that we could
use as follows:

51

52 CHAPTER 5. FROM REPEATED EXPRESSIONS TO FUNCTIONS

armenia

three-stripe-flag("red", "blue", "orange")

austria

three-stripe-flag("red", "white", "red")

In this program, we provide three-stripe-flag only with the information
that customizes the image creation to a specific flag. The operation itself would
take care of creating and aligning the rectangles. We want to end up with the same
images for the Armenian and Austrian flags as we would have gotten with our
original program. Such an operator doesn’t exist in Pyret: it is specific only to our
application of creating flag images. To make this program work, then, we need the
ability to add our own operators (henceforth called functions) to Pyret.

5.2 Defining Functions

In programming, a function takes one or more (configuration) parameters and uses
them to produce a result.

5.2. DEFINING FUNCTIONS 53

Strategy: Creating Functions From Expressions

If we have multiple concrete expressions that are identical except for a cou-
ple of specific data values, we create a function with the common code as
follows:

• Write down at least two expressions showing the desired computation
(in this case, the expressions that produce the Armenian and Austrian
flags).

• Identify which parts are fixed (i.e., the creation of rectangles with di-
mensions 120 and 30, the use of above to stack the rectangles) and
which are changing (i.e., the stripe colors).

• For each changing part, give it a name (say top, middle, and bottom),
which will be the parameter that stands for that part.

• Rewrite the examples to be in terms of these parameters. For example:

frame(

above(rectangle(120, 30, "solid", top),

above(rectangle(120, 30, "solid", middle),

rectangle(120, 30, "solid", bottom))))

• Name the function something suggestive: e.g., three-stripe-flag.

• Write the syntax for functions around the expression:

fun <function name>(<parameters>):

<the expression goes here>

end

where the expression is called the body of the function. (Programmers
often use angle brackets to say “replace with something appropriate”;
the brackets themselves aren’t part of the notation.)

Here’s the end product:

fun three-stripe-flag(top, middle, bot):

frame(

above(rectangle(120, 30, "solid", top),

above(rectangle(120, 30, "solid", middle),

54 CHAPTER 5. FROM REPEATED EXPRESSIONS TO FUNCTIONS

rectangle(120, 30, "solid", bot))))

end

While this looks like a lot of work now, it won’t once you get used to it. We will
go through the same steps over and over, and eventually they’ll become so intuitive
that you won’t need to start from multiple similar expressions.

Do Now!

Why does the function body have only one expression, when before we had
a separate one for each flag?

We have only one expression because the whole point was to get rid of all the
changing parts and replace them with parameters.

With this function in hand, we can write the following two expressions to gen-
erate our original flag images:

three-stripe-flag("red", "blue", "orange")

three-stripe-flag("red", "white", "red")

When we provide values for the parameters of a function to get a result, we say
that we are calling the function. We use the term call for expressions of this form.

If we want to name the resulting images, we can do so as follows:

armenia = three-stripe-flag("red", "blue", "orange")

austria = three-stripe-flag("red", "white", "red")

(Side note: Pyret only allows one value per name in the directory. If your file
already had definitions for the names armenia or austria, Pyret will give you an
error at this point. You can use a different name (like austria2) or comment out
the original definition using #.)

How Functions Evaluate

So far, we have learned three rules for how Pyret processes your program:

• If you write an expression, Pyret evaluates it to produce its value.

• If you write a statement that defines a name, Pyret evaluates the expression
(right side of =), then makes an entry in the directory to associate the name
with the value.

• If you write an expression that uses a name from the directory, Pyret substi-
tutes the name with the corresponding value.

5.2. DEFINING FUNCTIONS 55

Now that we can define our own functions, we have to consider two more cases:
what does Pyret do when you define a function (using fun), and what does Pyret
do when you call a function (with values for the parameters)?

• When Pyret encounters a function definition in your file, it makes an entry in
the directory to associate the name of the function with its code. The body
of the function does not get evaluated at this time.

• When Pyret encounters a function call while evaluating an expression, it
replaces the call with the body of the function, but with the parameter values
substituted for the parameter names in the body. Pyret then continues to
evaluate the body with the substituted values.

As an example of the function-call rule, if you evaluate

three-stripe-flag("red", "blue", "orange")

Pyret starts from the function body

frame(

above(rectangle(120, 30, "solid", top),

above(rectangle(120, 30, "solid", middle),

rectangle(120, 30, "solid", bot))))

substitutes the parameter values

frame(

above(rectangle(120, 30, "solid", "red"),

above(rectangle(120, 30, "solid", "blue"),

rectangle(120, 30, "solid", "orange"))))

then evaluates the expression, producing the flag image.
Note that the second expression (with the substituted values) is the same ex-

pression we started from for the Armenian flag. Substitution restores that ex-
pression, while still allowing the programmer to write the shorthand in terms of
three-stripe-flag.

Type Annotations

What if we made a mistake, and tried to call the function as follows:

three-stripe-flag(50, "blue", "red")

56 CHAPTER 5. FROM REPEATED EXPRESSIONS TO FUNCTIONS

Do Now!

What do you think Pyret will produce for this expression?

The first parameter to three-stripe-flag is supposed to be the color of the
top stripe. The value 50 is not a string (much less a string naming a color). Pyret
will substitute 50 for top in the first call to rectangle, yielding the following:

frame(

above(rectangle(120, 30, "solid", 50),

above(rectangle(120, 30, "solid", "blue"),

rectangle(120, 30, "solid", "red"))))

When Pyret tries to evaluate the rectangle expression to create the top stripe,
it generates an error that refers to that call to rectangle.

If someone else were using your function, this error might not make sense:
they didn’t write an expression about rectangles. Wouldn’t it be better to have
Pyret report that there was a problem in the use of three-stripe-flag itself?

As the author of three-stripe-flag, you can make that happen by anno-
tating the parameters with information about the expected type of value for each
parameter. Here’s the function definition again, this time requiring the three pa-
rameters to be strings:

fun three-stripe-flag(top :: String,

mid :: String,

bot :: String):

frame(

above(rectangle(120, 30, "solid", top),

above(rectangle(120, 30, "solid", mid),

rectangle(120, 30, "solid", bot))))

end

Notice that the notation here is similar to what we saw in contracts within the
documentation: the parameter name is followed by a double-colon (::) and a type
name (so far, one of Number, String, or Image).Putting each parameter on its

own line is not required, but it
sometimes helps with
readability.

Run your file with this new definition and try the erroneous call again. You
should get a different error message that is just in terms of three-stripe-flag.

It is also common practice to add a type annotation that captures the type of the
function’s output. That annotation goes after the list of parameters:

fun three-stripe-flag(top :: String,

mid :: String,

bot :: String) -> Image:

5.2. DEFINING FUNCTIONS 57

frame(

above(rectangle(120, 30, "solid", top),

above(rectangle(120, 30, "solid", mid),

rectangle(120, 30, "solid", bot))))

end

Note that all of these type annotations are optional. Pyret will run your program
whether or not you include them. You can put type annotations on some parameters
and not others; you can include the output type but not any of the parameter types.
Different programming languages have different rules about types.

We will think of types as playing two roles: giving Pyret information that it
can use to focus error messages more accurately, and guiding human readers of
programs as to the proper use of user-defined functions.

Documentation

Imagine that you opened your program file from this chapter a couple of months
from now. Would you remember what computation three-stripe-flag does?
The name is certainly suggestive, but it misses details such as that the stripes are
stacked vertically (rather than horizontally) and that the stripes are equal height.
Function names aren’t designed to carry this much information.

Programmers also annotate a function with a docstring, a short, human-language
description of what the function does. Here’s what the Pyret docstring might look
like for three-stripe-flag:

fun three-stripe-flag(top :: String,

middle :: String,

bot :: String) -> Image:

doc: "produce image of flag with three equal-height horizontal stripes"

frame(

above(rectangle(120, 30, "solid", top),

above(rectangle(120, 30, "solid", middle),

rectangle(120, 30, "solid", bot))))

end

While docstrings are also optional from Pyret’s perspective, you should always
provide one when you write a function. They are extremely helpful to anyone
who has to read your program, whether that is a co-worker, grader. . . or yourself, a
couple of weeks from now.

58 CHAPTER 5. FROM REPEATED EXPRESSIONS TO FUNCTIONS

5.3 Functions Practice: Moon Weight

Suppose we’re responsible for outfitting a team of astronauts for lunar exploration.
We have to determine how much each of them will weigh on the Moon’s surface.
On the Moon, objects weigh only one-sixth their weight on earth. Here are the
expressions for several astronauts (whose weights are expressed in pounds):

100 * 1/6

150 * 1/6

90 * 1/6

As with our examples of the Armenian and Austrian flags, we are writing the same
expression multiple times. This is another situation in which we should create a
function that takes the changing data as a parameter but captures the fixed compu-
tation only once.

In the case of the flags, we noticed we had written essentially the same expres-
sion more than once. Here, we have a computation that we expect to do multiple
times (once for each astronaut). It’s boring to write the same expression over and
over again. Besides, if we copy or re-type an expression multiple times, sooner or
later we’re bound to make a transcription error.This is an instance of the DRY

principle, where DRY means
"don’t repeat yourself".

Let’s remind ourselves of the steps for creating a function:

• Write down some examples of the desired calculation. We did that above.

• Identify which parts are fixed (above, * 1/6) and which are changing (above,
100, 150, 90...).

• For each changing part, give it a name (say earth-weight), which will be
the parameter that stands for it.

• Rewrite the examples to be in terms of this parameter:

earth-weight * 1/6

This will be the body, i.e., the expression inside the function.

• Come up with a suggestive name for the function: e.g., moon-weight.

• Write the syntax for functions around the body expression:

fun moon-weight(earth-weight):

earth-weight * 1/6

end

https://en.wikipedia.org/wiki/Don%27t_repeat_yourself
https://en.wikipedia.org/wiki/Don%27t_repeat_yourself

5.4. DOCUMENTING FUNCTIONS WITH EXAMPLES 59

• Remember to include the types of the parameter and output, as well as the
documentation string. This yields the final function:

fun moon-weight(earth-weight :: Number) -> Number:

doc: "Compute weight on moon from weight on earth"

earth-weight * 1/6

end

5.4 Documenting Functions with Examples

In each of the functions above, we’ve started with some examples of what we
wanted to compute, generalized from there to a generic formula, turned this into a
function, and then used the function in place of the original expressions.

Now that we’re done, what use are the initial examples? It seems tempting to
toss them away. However, there’s an important rule about software that you should
learn: Software Evolves. Over time, any program that has any use will change and
grow, and as a result may end up producing different values than it did initially.
Sometimes these are intended, but sometimes these are a result of mistakes (in-
cluding such silly but inevitable mistakes like accidentally adding or deleting text
while typing). Therefore, it’s always useful to keep those examples around for fu-
ture reference, so you can immediately be alerted if the function deviates from the
examples it was supposed to generalize.

Pyret makes this easy to do. Every function can be accompanied by a where

clause that records the examples. For instance, our moon-weight function can be
modified to read:

fun moon-weight(earth-weight :: Number) -> Number:

doc: "Compute weight on moon from weight on earth"

earth-weight * 1/6

where:

moon-weight(100) is 100 * 1/6

moon-weight(150) is 150 * 1/6

moon-weight(90) is 90 * 1/6

end

When written this way, Pyret will actually check the answers every time you run
the program, and notify you if you have changed the function to be inconsistent
with these examples.

60 CHAPTER 5. FROM REPEATED EXPRESSIONS TO FUNCTIONS

Do Now!

Check this! Change the formula—for instance, replace the body of the func-
tion with

earth-weight * 1/3

—and see what happens. Pay attention to the output from CPO: you should
get used to recognizing this kind of output.

Do Now!

Now, fix the function body, and instead change one of the answers—e.g.,
write

moon-weight(90) is 90 * 1/3

—and see what happens. Contrast the output in this case with the output
above.

Of course, it’s pretty unlikely you will make a mistake with a function this sim-
ple (except through a typo). After all, the examples are so similar to the function’s
own body. Later, however, we will see that the examples can be much simpler than
the body, and there is a real chance for things to get inconsistent. At that point, the
examples become invaluable in making sure we haven’t made a mistake in our pro-
gram. In fact, this is so valuable in professional software development that good
programmers always write down large collections of examples—called tests—to
make sure their programs are behaving as they expect.

For our purposes, we are writing examples as part of the process of making sure
we understand the problem. It’s always a good idea to make sure you understand
the question before you start writing code to solve a problem. Examples are a
nice intermediate point: you can sketch out the relevant computation on concrete
values first, then worry about turning it into a function. If you can’t write the
examples, chances are you won’t be able to write the function either. Examples
break down the programming process into smaller, manageable steps.

5.5 Functions Practice: Cost of pens

Let’s create one more function, this time for a more complicated example. Imagine
that you are trying to compute the total cost of an order of pens with slogans (or
messages) printed on them. Each pen costs 25 cents plus an additional 2 cents per
character in the message (we’ll count spaces between words as characters).

5.5. FUNCTIONS PRACTICE: COST OF PENS 61

Following our steps to create a function once again, let’s start by writing two
concrete expressions that do this computation.

ordering 3 pens that say "wow"

3 * (0.25 + (string-length("wow") * 0.02))

ordering 10 pens that say "smile"

10 * (0.25 + (string-length("smile") * 0.02))

These examples introduce a new built-in function called string-length. It
takes a string as input and produces the number of characters (including spaces
and punctuation) in the string. These examples also show an example of working
with numbers other than integers. Pyret requires a number before

the decimal point, so if the
“whole number” part is zero,
you need to write 0 before the
decimal. Also observe that
Pyret uses a decimal point; it
doesn’t support conventions
such as “0,02”.

The second step to writing a function was to identify which information differs
across our two examples. In this case, we have two: the number of pens and the
message to put on the pens. This means our function will have two parameters
rather than just one.

fun pen-cost(num-pens :: Number, message :: String) -> Number:

num-pens * (0.25 + (string-length(message) * 0.02))

end

Of course, as things get too long, it may be helpful to use multiple lines:

fun pen-cost(num-pens :: Number, message :: String)

-> Number:

num-pens * (0.25 + (string-length(message) * 0.02))

end

If you want to write a multi-line docstring, you need to use “‘ rather than " to
begin and end it, like so:

fun pen-cost(num-pens :: Number, message :: String)

-> Number:

doc: ‘‘‘total cost for pens, each 25 cents

plus 2 cents per message character‘‘‘

num-pens * (0.25 + (string-length(message) * 0.02))

end

We should also document the examples that we used when creating the function:

fun pen-cost(num-pens :: Number, message :: String)

-> Number:

doc: ‘‘‘total cost for pens, each 25 cents

plus 2 cents per message character‘‘‘

https://en.wikipedia.org/wiki/Decimal_separator

62 CHAPTER 5. FROM REPEATED EXPRESSIONS TO FUNCTIONS

num-pens * (0.25 + (string-length(message) * 0.02))

where:

pen-cost(3, "wow")

is 3 * (0.25 + (string-length("wow") * 0.02))

pen-cost(10, "smile")

is 10 * (0.25 + (string-length("smile") * 0.02))

end

When writing where examples, we also want to include special yet valid cases
that the function might have to handle, such as an empty message.

pen-cost(5, "") is 5 * 0.25

Note that our empty-message example has a simpler expression on the right side
of is. The expression for what the function returns doesn’t have to match the body
expression; it simply has to evaluate to the same value as you expect the example
to produce. Sometimes, we’ll find it easier to just write the expected value directly.
For the case of someone ordering no pens, for example, we’d include:

pen-cost(0, "bears") is 0

The point of the examples is to document how a function behaves on a variety of
inputs. What goes to the right of the is should summarize the computation or the
answer in some meaningful way. Most important? Do not write the function,
run it to determine the answer, then put that answer on the right side of the
is! Why not? Because the examples are meant to give some redundancy to the
design process, so that you catch errors you might have made. If your function
body is incorrect, and you use the function to generate the example, you won’t get
the benefit of using the example to check for errors.

We’ll keep returning to this idea of writing good examples. Don’t worry if you
still have questions for now. Also, for the time being, we won’t worry about non-
sensical situations like negative numbers of pens. We’ll get to those after we’ve
learned additional coding techniques that will help us handle such situations prop-
erly.

Do Now!

We could have combined our two special cases into one example, such as

pen-cost(0, "") is 0

Does doing this seem like a good idea? Why or why not?

5.6. RECAP: DEFINING FUNCTIONS 63

5.6 Recap: Defining Functions

This chapter has introduced the idea of a function. Functions play a key role in
programming: they let us configure computations with different concrete values at
different times. The first time we compute the cost of pens, we might be asking
about 10 pens that say "Welcome". The next time, we might be asking about 100
pens that say "Go Bears!". The core computation is the same in both cases, so
we want to write it out once, configuring it with different concrete values each time
we use it.

We’ve covered several specific ideas about functions:

• We showed the fun notation for writing functions. You learned that a func-
tion has a name (that we can use to refer to it), one or more parameters
(names for the values we want to configure), as well as a body, which is the
computation that we want to perform once we have concrete values for the
parameters.

• We showed that we should include examples with our functions, to illustrate
what the function computes on various specific values. Examples go in a
where block within the function.

• We showed that we can use a function by providing concrete values to con-
figure its parameters. To do this, we write the name of the function we want
to use, followed by a pair of parenthesis around comma-separated values
for the parameters. For example, writing the following expression (at the
interactions prompt) will compute the cost of a specific order of pens:

pen-cost(10, "Welcome")

• We discussed that if we define a function in the definitions pane then press
Run, Pyret will make an entry in the directory with the name of the function.
If we later use the function, Pyret will look up the code that goes with that
name, substitute the concrete values we provided for the parameters, and
return the result of evaluating the resulting expression. Pyret will NOT pro-
duce anything in the interactions pane for a function definition (other than a
report about whether the examples hold).

There’s much more to learn about functions, including different reasons for
creating them. We’ll get to those in due course.

64 CHAPTER 5. FROM REPEATED EXPRESSIONS TO FUNCTIONS

Chapter 6

Conditionals and Booleans

6.1 Motivating Example: Shipping Costs

In section 5.5, we wrote a program (pen-cost) to compute the cost of ordering
pens. Continuing the example, we now want to account for shipping costs. We’ll
determine shipping charges based on the cost of the order.

Specifically, we will write a function add-shipping to compute the total cost
of an order including shipping. Assume an order valued at $10 or less ships for $4,
while an order valued above $10 ships for $8. As usual, we will start by writing
examples of the add-shipping computation.

Do Now!

Use the is notation from where blocks to write several examples of add-shipping.
How are you choosing which inputs to use in your examples? Are you pick-
ing random inputs? Being strategic in some way? If so, what’s your strategy?

Here is a proposed collection of examples for add-shipping.

add-shipping(10) is 10 + 4

add-shipping(3.95) is 3.95 + 4

add-shipping(20) is 20 + 8

add-shipping(10.01) is 10.01 + 8

Do Now!

What do you notice about our examples? What strategies do you observe
across our choices?

Our proposed examples feature several strategic decisions:

65

66 CHAPTER 6. CONDITIONALS AND BOOLEANS

• Including 10, which is at the boundary of charges based on the text

• Including 10.01, which is just over the boundary

• Including both natural and real (decimal) numbers

• Including examples that should result in each shipping charge mentioned
in the problem (4 and 8)

So far, we have used a simple rule for creating a function body from examples:
locate the parts that are changing, replace them with names, then make the names
the parameters to the function.

Do Now!

What is changing across our add-shipping examples? Do you notice any-
thing different about these changes compared to the examples for our previ-
ous functions?

Two things are new in this set of examples:

• The values of 4 and 8 differ across the examples, but they each occur in
multiple examples.

• The values of 4 and 8 appear only in the computed answers—not as an input.
Which one we use seems to depend on the input value.

These two observations suggest that something new is going on with add-shipping.
In particular, we have clusters of examples that share a fixed value (the shipping
charge), but different clusters (a) use different values and (b) have a pattern to their
inputs (whether the input value is less than or equal to 10). This calls for being
able to ask questions about inputs within our programs.

6.2 Conditionals: Computations with Decisions

To ask a question about our inputs, we use a new kind of expression called an if
expression. Here’s the full definition of add-shipping:

fun add-shipping(order-amt :: Number) -> Number:

doc: "add shipping costs to order total"

if order-amt <= 10:

order-amt + 4

else:

6.3. BOOLEANS 67

order-amt + 8

end

where:

add-shipping(10) is 10 + 4

add-shipping(3.95) is 3.95 + 4

add-shipping(20) is 20 + 8

add-shipping(10.01) is 10.01 + 8

end

In an if expression, we ask a question that can produce an answer that is true or
false (here order-amt <= 10, which we’ll explain below in section 6.3), provide
one expression for when the answer to the question is true (order-amt + 4), and
another for when the result is false (order-amt + 8). The else in the program
marks the answer in the false case; we call this the else clause. We also need end

to tell Pyret we’re done with the question and answers.

6.3 Booleans

Every expression in Pyret evaluates in a value. So far, we have seen three types
of values: Number, String, and Image. What type of value does a question like
order-amt <= 10 produce? We can use the interactions prompt to experiment
and find out.

Do Now!

Enter each of the following expressions at the interactions prompt. What type
of value did you get? Do the values fit the types we have seen so far?

3.95 <= 10

20 <= 10

The values true and false belong to a new type in Pyret, called Boolean. Named for George Boole.

While there are an infinitely many values of type Number, there are only two of
type Boolean: true and false.

Exercise

What would happen if we entered order-amt <= 10 at the interactions prompt
to explore booleans? Why does that happen?

https://en.wikipedia.org/wiki/George_Boole

68 CHAPTER 6. CONDITIONALS AND BOOLEANS

Other Boolean Operations

There are many other built-in operations that return Boolean values. Comparing
values for equality is a common one:There is much more we can and

should say about equality,
which we will do later
[section 21.1].

››› 1 == 1

true

››› 1 == 2

false

››› "cat" == "dog"

false

››› "cat" == "CAT"

false

In general, == checks whether two values are equal. Note this is different from
the single = used to associate names with values in the directory.

The last example is the most interesting: it illustrates that strings are case-
sensitive, meaning individual letters must match in their case for strings to be con-
sidered equal.This will become relevant when

we get to tables later. Sometimes, we also want to compare strings to determine their alphabetical
order. Here are several examples:

››› "a" < "b"

true

››› "a" >= "c"

false

6.3. BOOLEANS 69

››› "that" < "this"

true

››› "alpha" < "beta"

true

which is the alphabetical order we’re used to; but others need some explaining:

››› "a" >= "C"

true

››› "a" >= "A"

true

These use a convention laid down a long time ago in a system called ASCII. Things get far more
complicated with non-ASCII
letters: e.g., Pyret thinks "Ł" is
> than "Z", but in Polish, this
should be false. Worse, the
ordering depends on location
(e.g., Denmark/Norway vs.
Finland/Sweden).

Do Now!

Can you compare true and false? Try comparing them for equality (==),
then for inequality (such as <).

In general, you can compare any two values for equality (well, almost, we’ll
come back to this later); for instance:

››› "a" == 1

false

If you want to compare values of a specific kind, you can use more specific opera-
tors:

››› num-equal(1, 1)

true

https://en.wikipedia.org/wiki/ASCII
https://en.wikipedia.org/wiki/Alphabetical_order

70 CHAPTER 6. CONDITIONALS AND BOOLEANS

››› num-equal(1, 2)

false

››› string-equal("a", "a")

true

››› string-equal("a", "b")

false

Why use these operators instead of the more generic ==?

Do Now!

Try

num-equal("a", 1)

string-equal("a", 1)

Therefore, it’s wise to use the type-specific operators where you’re expecting
the two arguments to be of the same type. Then, Pyret will signal an error if you
go wrong, instead of blindly returning an answer (false) which lets your program
continue to compute a nonsensical value.

There are even more Boolean-producing operators, such as:
››› wm = "will.i.am"

››› string-contains(wm, "will")

true

Note the capital W.

››› string-contains(wm, "Will")

false

In fact, just about every kind of data will have some Boolean-valued operators to
enable comparisons.

6.3. BOOLEANS 71

Combining Booleans

Often, we want to base decisions on more than one Boolean value. For instance,
you are allowed to vote if you’re a citizen of a country and you are above a certain
age. You’re allowed to board a bus if you have a ticket or the bus is having a
free-ride day. We can even combine conditions: you’re allowed to drive if you
are above a certain age and have good eyesight and—either pass a test or have a
temporary license. Also, you’re allowed to drive if you are not inebriated.

Corresponding to these forms of combinations, Pyret offers three main opera-
tions: and, or, and not. Here are some examples of their use:

››› (1 < 2) and (2 < 3)

true

››› (1 < 2) and (3 < 2)

false

››› (1 < 2) or (2 < 3)

true

››› (3 < 2) or (1 < 2)

true

››› not(1 < 2)

false

Exercise

Explain why numbers and strings are not good ways to express the answer to
a true/false question.

72 CHAPTER 6. CONDITIONALS AND BOOLEANS

6.4 Asking Multiple Questions

Shipping costs are rising, so we want to modify the add-shipping program to
include a third shipping level: orders between $10 and $30 ship for $8, but orders
over $30 ship for $12. This calls for two modifications to our program:

• We have to be able to ask another question to distinguish situations in which
the shipping charge is 8 from those in which the shipping charge is 12.

• The question for when the shipping charge is 8 will need to check whether
the input is between two values.

We’ll handle these in order.
The current body of add-shipping asks one question: order-amt <= 10.

We need to add another one for order-amt <= 30, using a charge of 12 if that
question fails. Where do we put that additional question?

An expanded version of the if-expression, using else if, allows you to ask
multiple questions:

fun add-shipping(order-amt :: Number) -> Number:

doc: "add shipping costs to order total"

if order-amt <= 10:

order-amt + 4

else if order-amt <= 30:

order-amt + 8

else:

order-amt + 12

end

where:

...

end

At this point, you should also add where examples that use the 12 charge.
How does Pyret determine which answer to return? It evaluates each question

expression in order, starting from the one that follows if. It continues through the
questions, returning the value of the answer of the first question that returns true.
Here’s a summary of the if-expression syntax and how it evaluates.

if QUESTION1:

<result in case first question true>

else if QUESTION2:

<result in case QUESTION1 false and QUESTION2 true>

else:

6.4. ASKING MULTIPLE QUESTIONS 73

<result in case both QUESTIONs false>

end

A program can have multiple else if cases, thus accommodating an arbitrary
number of questions within a program.

Do Now!

The problem description for add-shipping said that orders between 10 and
30 should incur an 8 charge. How does the above code capture “between”?

This is currently entirely implicit. It depends on us understanding the way an
if evaluates. The first question is order-amt <= 10, so if we continue to the
second question, it means order-amt > 10. In this context, the second question
asks whether order-amt <= 30. That’s how we’re capturing “between”-ness.

Do Now!

How might you modify the above code to build the “between 10 and 30”
requirement explicitly into the question for the 8 case?

Remember the and operator on booleans? We can use that to capture “be-
tween” relationships, as follows:

(order-amt > 10) and (order-amt <= 30)

Do Now!

Why are there parentheses around the two comparisons? If you replace
order-amt with a concrete value (such as 20) and leave off the parenthesis,
what happens when you evaluate this expression in the interactions pane?

Here is what add-shipping look like with the and included:

fun add-shipping(order-amt :: Number) -> Number:

doc: "add shipping costs to order total"

if order-amt <= 10:

order-amt + 4

else if (order-amt > 10) and (order-amt <= 30):

order-amt + 8

else:

order-amt + 12

end

where:

74 CHAPTER 6. CONDITIONALS AND BOOLEANS

add-shipping(10) is 10 + 4

add-shipping(3.95) is 3.95 + 4

add-shipping(20) is 20 + 8

add-shipping(10.01) is 10.01 + 8

add-shipping(30) is 30 + 12

end

Both versions of add-shipping support the same examples. Are both cor-
rect? Yes. And while the first part of the second question (order-amt > 10) is
redundant, it can be helpful to include such conditions for three reasons:

1. They signal to future readers (including ourselves!) the condition covering a
case.

2. They ensure that if we make a mistake in writing an earlier question, we
won’t silently get surprising output.

3. They guard against future modifications, where someone might modify an
earlier question without realizing the impact it’s having on a later one.

Exercise

An online-advertising firm needs to determine whether to show an ad for a
skateboarding park to website users. Write a function show-ad that takes the
age and haircolor of an individual user and returns true if the user is between
the ages of 9 and 18 and has either pink or purple hair.

Try writing this two ways: once with if expressions and once using just
boolean operations.

6.5. EVALUATING BY REDUCING EXPRESSIONS 75

Responsible Computing: Harms from Reducing People to Simple Data

Assumptions about users get encoded in even the simplest functions. The
advertising exercise shows an example in which a decision gets made on the
basis of two pieces of information about a person: age and haircolor. While
some people might stereotypically associate skateborders with being young
and having colored hair, many skateborders do not fit these criteria and many
people who fit these criteria don’t skateboard.

While real programs to match ads to users are more sophisticated than
this simple function, even the most sophisticated advertising programs boil
down to tracking features or information about individuals and comparing
it to information about the content of ads. A real ad system would differ in
tracking dozens (or more) of features and using more advanced programming
ideas than simple conditionals to determine the suitability of an ad (we’ll dis-
cuss some of these later in the book). This example also extends to situations
far more serious than ads: who gets hired, granted a bank loan, or sent to or
released from jail are other examples of real systems that depend on compar-
ing data about individuals with criteria maintained by a program.

From a social responsibility perspective, the questions here are what data
about individuals should be used to represent them for processing by pro-
grams and what stereotypes might those data encode. In some cases, indi-
viduals can be represented by data without harm (a university housing office,
for examples, stores student ID numbers and which room a student is liv-
ing in). But in other cases, data about individuals get interpreted in order to
predict something about them. Decisions based on those predictions can be
inaccurate and hence harmful.

6.5 Evaluating by Reducing Expressions

In section 5.2.1, we talked about how Pyret reduces expressions and function calls
to values. Let’s revisit this process, this time expanding to consider if-expressions.
Suppose we want to compute the wages of a worker. The worker is paid $10 for
every hour up to the first 40 hours, and is paid $15 for every extra hour. Let’s say
hours contains the number of hours they work, and suppose it’s 45:

hours = 45

Suppose the formula for computing the wage is

if hours <= 40:

hours * 10

https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing
https://www.propublica.org/article/machine-bias-risk-assessments-in-criminal-sentencing

76 CHAPTER 6. CONDITIONALS AND BOOLEANS

else if hours > 40:

(40 * 10) + ((hours - 40) * 15)

end

Let’s now see how this results in an answer, using a step-by-step process that
should match what you’ve seen in algebra classes (the steps are described in the
margin notes to the right):The first step is to substitute the

hours with 45.
if 45 <= 40:

45 * 10

else if 45 > 40:

(40 * 10) + ((45 - 40) * 15)

end
Next, the conditional part of the
if expression is evaluated,
which in this case is false.

=> if false:

45 * 10

else if 45 > 40:

(40 * 10) + ((45 - 40) * 15)

end
Since the condition is false,
the next branch is tried. => if 45 > 40:

(40 * 10) + ((45 - 40) * 15)

end
Pyret evaluates the question in
the conditional, which in this
case produces true.

=> if true:

(40 * 10) + ((45 - 40) * 15)

end
Since the condition is true, the
expression reduces to the body
of that branch. After that, it’s
just arithmetic.

=> (40 * 10) + ((45 - 40) * 15)

=> 400 + (5 * 15)

=> 475

This style of reduction is the best way to think about the evaluation of Pyret
expressions. The whole expression takes steps that simplify it, proceeding by sim-
ple rules. You can use this style yourself if you want to try and work through the
evaluation of a Pyret program by hand (or in your head).

6.6 Composing Functions

We started this chapter wanting to account for shipping costs on an order of pens.
So far, we have written two functions:

6.6. COMPOSING FUNCTIONS 77

• pen-cost for computing the cost of the pens

• add-shipping for adding shipping costs to a total amount

What if we now wanted to compute the price of an order of pens including
shipping? We would have to use both of these functions together, sending the
output of pen-cost to the input of add-shipping.

Do Now!

Write an expression that computes the total cost, with shipping, of an order
of 10 pens that say "bravo".

There are two ways to structure this computation. We could pass the result of
pen-cost directly to add-shipping:

add-shipping(pen-cost(10, "bravo"))

Alternatively, you might have named the result of pen-cost as an intermediate
step:

pens = pen-cost(10, "bravo")

add-shipping(pens)

Both methods would produce the same answer.

How Function Compositions Evaluate

Let’s review how these programs evaluate in the context of substitution and the
directory. We’ll start with the second version, in which we explicitly name the
result of calling pen-cost.

Evaluating the second version: At a high level, Pyret goes through the fol-
lowing steps:

• Substitute 10 for num-pens and "bravo" for message in the body of pen-cost,
then evaluate the substituted body

• Store pens in the directory, with a value of 3.5

• As a first step in evaluating add-shipping(pens), look up the value of
pens in the directory

• Substitute 3.5 for order-amt in the body of add-shipping then evaluate
the resulting expression, which results in 7.5

78 CHAPTER 6. CONDITIONALS AND BOOLEANS

Evaluating the first version: As a reminder, the first version consisted of a
single expression:

add-shipping(pen-cost(10, "bravo"))

• Since arguments are evaluated before functions get called, start by evaluating
pen-cost(10, "bravo") (again using substitution), which reduces to 3.5

• Substitute 3.5 for order-amt in the body of add-shipping then evaluate
the resulting expression, which results in 7.5

Do Now!

Contrast these two summaries. Where do they differ? What about the code
led to those differences?

The difference lies in the use of the directory: the version that explicitly named
pens uses the directory. The other version doesn’t use the directory at all. Yet
both approaches lead to the same result, since the same value (the result of calling
pen-cost) gets substituted into the body of add-shipping.

This analysis might suggest that the version that uses the directory is somehow
wasteful: it seems to take more steps just to end up at the same result. Yet one might
argue that the version that uses the directory is easier to read (different readers will
have different opinions on this, and that’s fine). So which should we use?

Use whichever makes more sense to you on a given problem. There will be
times when we prefer each of these styles. Furthermore, it will turn out (once
we’ve learned more about nuances of how programs evaluate) that the two versions
aren’t as different as they appear right now.

Function Composition and the Directory

Let’s try one more variation on this problem. Perhaps seeing us name the interme-
diate result of pen-cost made you wish that we had used intermediate names to
make the body of pen-cost more readable. For example, we could have written it
as:

fun pen-cost(num-pens :: Number, message :: String)

-> Number:

doc: ‘‘‘total cost for pens, each 25 cents

plus 2 cents per message character‘‘‘

message-cost = (string-length(message) * 0.02)

num-pens * (0.25 + message-cost)

6.6. COMPOSING FUNCTIONS 79

where:

...

end

Do Now!

Write out the high level steps for how Pyret will evaluate the following pro-
gram using this new version of pen-cost:

pens = pen-cost(10, "bravo")

add-shipping(pens)

Hopefully, you made two entries into the directory, one for message-cost

inside the body of pen-cost and one for pens as we did earlier.

Do Now!

Consider the following program. What result do you think Pyret should pro-
duce?

pens = pen-cost(10, "bravo")

cheap-message = (message-cost > 0.5)

add-shipping(pens)

Using the directory you envisioned for the previous activity, what answer
do you think you will get?

Something odd is happening here. The new program tries to use message-cost
to define cheap-message. But the name message-cost doesn’t appear anywhere
in the program, unless we peek inside the function bodies. But letting code peek
inside function bodies doesn’t make sense: you might not be able to see inside
the functions (if they are defined in libraries, for example), so this program should
report an error that message-cost is undefined.

Okay, so that’s what should happen. But our discussion of the directory sug-
gests that both pens and message-cost will be in the directory, meaning Pyret
would be able to use message-cost. What’s going on?

This example prompts us to explain one more nuance about the directory. Pre-
cisely to avoid problems like the one illustrated here (which should produce an
error), directory entries made within a function are local (private) to the function
body. When you call a function, Pyret sets up a local directory that other functions
can’t see. A function body can add or refer to names in either its local, private
directory (as with message-cost) or the overall (global) directory (as with pens).

80 CHAPTER 6. CONDITIONALS AND BOOLEANS

But in no case can one function call peek inside the local directory for another func-
tion call. Once a function call completes, its local directory disappears (because
nothing else would be able to use it anyway).

6.7 Nested Conditionals

We showed that the results in if-expressions are themselves expressions (such as
order-amt + 4 in the following function):

fun add-shipping(order-amt :: Number) -> Number:

doc: "add shipping costs to order total"

if order-amt <= 10:

order-amt + 4

else:

order-amt + 8

end

end

The result expressions can be more complicated. In fact, they could be entire
if-expressions!. To see an example of this, let’s develop another function. This
time, we want a function that will compute the cost of movie tickets. Let’s start
with a simple version in which tickets are $10 apiece.

fun buy-tickets1(count :: Number) -> Number:

doc: "Compute the price of tickets at $10 each"

count * 10

where:

buy-tickets1(0) is 0

buy-tickets1(2) is 2 * 10

buy-tickets1(6) is 6 * 10

end

Now, let’s augment the function with an extra parameter to indicate whether
the purchaser is a senior citizen who is entitled to a discount. In such cases, we
will reduce the overall price by 15%.

fun buy-tickets2(count :: Number, is-senior :: Boolean)

-> Number:

doc: ‘‘‘Compute the price of tickets at $10 each with

senior discount of 15%‘‘‘

if is-senior == true:

count * 10 * 0.85

6.7. NESTED CONDITIONALS 81

else:

count * 10

end

where:

buy-tickets2(0, false) is 0

buy-tickets2(0, true) is 0

buy-tickets2(2, false) is 2 * 10

buy-tickets2(2, true) is 2 * 10 * 0.85

buy-tickets2(6, false) is 6 * 10

buy-tickets2(6, true) is 6 * 10 * 0.85

end

There are a couple of things to notice here:

• The function now has an additional parameter of type Boolean to indicate
whether the purchaser is a senior citizen.

• We have added an if expression to check whether to apply the discount.

• We have more examples, because we have to vary both the number of tickets
and whether a discount applies.

Now, let’s extend the program once more, this time also offering the discount if
the purchaser is not a senior but has bought more than 5 tickets. Where should we
modify the code to do this? One option is to first check whether the senior discount
applies. If not, we check whether the number of tickets qualifies for a discount:

fun buy-tickets3(count :: Number, is-senior :: Boolean)

-> Number:

doc: ‘‘‘Compute the price of tickets at $10 each with

discount of 15% for more than 5 tickets

or being a senior‘‘‘

if is-senior == true:

count * 10 * 0.85

else:

if count > 5:

count * 10 * 0.85

else:

count * 10

end

end

where:

82 CHAPTER 6. CONDITIONALS AND BOOLEANS

buy-tickets3(0, false) is 0

buy-tickets3(0, true) is 0

buy-tickets3(2, false) is 2 * 10

buy-tickets3(2, true) is 2 * 10 * 0.85

buy-tickets3(6, false) is 6 * 10 * 0.85

buy-tickets3(6, true) is 6 * 10 * 0.85

end

Notice here that we have put a second if expression within the else case. This is
valid code. (We could have also made an else if here, but we didn’t so that we
could show that nested conditionals are also valid).

Exercise

Show the steps through which this function would evaluate in a situation
where no discount applies, such as buy-tickets3(2, false).

Do Now!

Look at the current code: do you see a repeated computation that we might
end up having to modify later?

Part of good code style is making sure that our programs would be easy to
maintain later. If the theater changes its discount policy, for example, the current
code would require us to change the discount (0.85) in two places. It would be
much better to have that computation written only one time. We can achieve that
by asking which conditions lead to the discount applying, and writing them as the
check within just one if expression.

Do Now!

Under what conditions should the discount apply?

Here, we see that the discount applies if either the purchaser is a senior or more
than 5 tickets have been bought. We can therefore simplify the code by using or

as follows (we’ve left out the examples because they haven’t changed from the
previous version):

fun buy-tickets4(count :: Number, is-senior :: Boolean)

-> Number:

doc: ‘‘‘Compute the price of tickets at $10 each with

discount of 15% for more than 5 tickets

or being a senior‘‘‘

6.7. NESTED CONDITIONALS 83

if (is-senior == true) or (count > 5):

count * 10 * 0.85

else:

count * 10

end

end

This code is much tighter, and all of the cases where the discount applies are de-
scribed together in one place. There are still two small changes we want to make
to really clean this up though.

Do Now!

Take a look at the expression is-senior == true. What will this evaluate
to when the value of is-senior is true? What will it evaluate to when the
value of is-senior is false?

Notice that the == true part is redundant. Since is-senior is already a boolean,
we can check its value without using the == operator. Here’s the revised code:

fun buy-tickets5(count :: Number, is-senior :: Boolean)

-> Number:

doc: ‘‘‘Compute the price of tickets at $10 each with

discount of 15% for more than 5 tickets

or being a senior‘‘‘

if is-senior or (count > 5):

count * 10 * 0.85

else:

count * 10

end

end

Notice the revised question in the if expression. As a general rule, your code
should never include == true. You can always take that out and just use the ex-
pression you were comparing to true.

Do Now!

What do you write to eliminate == false? For example, what might you
write instead of is-senior == false?

Finally, notice that we still have one repeated computation: the base cost of the
tickets (count * 10): if the ticket price changes, it would be better to have only
one place to update that price. We can clean that up by first computing the base
price, then applying the discount when appropriate:

84 CHAPTER 6. CONDITIONALS AND BOOLEANS

fun buy-tickets6(count :: Number, is-senior :: Boolean)

-> Number:

doc: ‘‘‘Compute the price of tickets at $10 each with

discount of 15% for more than 5 tickets

or being a senior‘‘‘

base = count * 10

if is-senior or (count > 5):

base * 0.85

else:

base

end

end

6.8 Recap: Booleans and Conditionals

With this chapter, our computations can produce different results in different situa-
tions. We ask questions using if-expressions, in which each question or check uses
an operator that produces a boolean.

• There are two Boolean values: true and false.

• A simple kind of check (that produces a boolean) compares values for equal-
ity (==) or inequality(<>). Other operations that you know from math, like <
and >=, also produce booleans.

• We can build larger expressions that produce booleans from smaller ones
using the operators and, or, not.

• We can use if expressions to ask true/false questions within a computation,
producing different results in each case.

• We can nest conditionals inside one another if needed.

• You never need to use == to compare a value to true or false: you can just
write the value or expression on its own (perhaps with not to get the same
computation).

Chapter 7

Introduction to Tabular Data

Many interesting data in computing are tabular—i.e., like a table—in form. First
we’ll see a few examples of them, before we try to identify what they have in
common. Here are some of them:

• An email inbox is a list of messages. For each message, your inbox stores a
bunch of information: its sender, the subject line, the conversation it’s part
of, the body, and quite a bit more.

• A music playlist. For each song, your music player maintains a bunch of
information: its name, the singer, its length, its genre, and so on.

• A filesystem folder or directory. For each file, your filesystem records a
name, a modification date, size, and other information.

85

86 CHAPTER 7. INTRODUCTION TO TABULAR DATA

Do Now!

Can you come up with more examples?

How about:

• Responses to a party invitation.

• A gradebook.

• A calendar agenda.

You can think of many more in your life!
What do all these have in common? The characteristics of tabular data are:

• They contain information about zero or more items (i.e., individuals or arti-
facts) that share characteristics. Each item is stored in a row. Each column
tracks one of the shared attributes across the rows. For example, each song
or email message or file is a row. Each of their characteristics—the song
title, the message subject, the filename—is a column.While some spreadsheets might

swap the roles of rows and
columns, we stick to this
organization as it aligns with
the design of data-science
software libraries. This is an
example of what Hadley
Wickham calls tidy data.

• Each row has the same columns as the other rows, in the same order.

• A given column has the same type, but different columns can have different
types. For instance, an email message has a sender’s name, which is a string;
a subject line, which is a string; a sent date, which is a date; whether it’s been
read, which is a Boolean; and so on.

• The rows might be in some particular order. For instance, the emails are
ordered by which was most recently sent.

https://vita.had.co.nz/papers/tidy-data.pdf

7.1. CREATING TABULAR DATA 87

Exercise

Find the characteristics of tabular data in the other examples described above,
as well as in the ones you described.

We will now learn how to program with tables and to think about decompos-
ing tasks involving them. The programs later in this chapter use a function-based You can also look up the full

Pyret documentation for table
operations.

notation for processing tables, which you can access via the following:

include shared-gdrive(

"dcic-2021",

"1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

Documentation on the function-based table operators is available on a separate
page outside of the Pyret documentation.

7.1 Creating Tabular Data

Pyret provides multiple easy ways of creating tabular data. The simplest is to define
the datum in a program as follows:

table: name, age

row: "Alicia", 30

row: "Meihui", 40

row: "Jamal", 25

end

That is, a table is followed by the names of the columns in their desired order,
followed by a sequence of rows. Each row must contain as many data as the column
declares, and in the same order.

Exercise

Change different parts of the above example—e.g., remove a necessary value
from a row, add an extraneous one, remove a comma, add an extra comma,
leave an extra comma at the end of a row—and see what errors you get.

Note that in a table, the order of columns matters: two tables that are otherwise
identical but with different column orders are not considered equal.

check:

table: name, age

row: "Alicia", 30

row: "Meihui", 40

https://www.pyret.org/docs/latest/tables.html
https://www.pyret.org/docs/latest/tables.html
https://hackmd.io/@cs111/table

88 CHAPTER 7. INTRODUCTION TO TABULAR DATA

row: "Jamal", 25

end

is-not

table: age, name

row: 30, "Alicia"

row: 40, "Meihui"

row: 25, "Jamal"

end

end

Observe that the example above uses is-not, i.e., the test passes, meaning that the
tables are not equal.

The check: annotation here is a way of writing is assertions about expressions
outside of the context of a function (and its where block). We’ll learn more about
check in section 17.1.

Table expressions create table values. These can be stored in variables just like
numbers, strings, and images:

people = table: name, age

row: "Alicia", 30

row: "Meihui", 40

row: "Jamal", 25

end

We call these literal tables when we create them with table. Pyret provides
other ways to get tabular data, too! In particular, you can import tabular data from
a spreadsheet, so any mechanism that lets you create such a sheet can also be used.
You might:

• create the sheet on your own,

• create a sheet collaboratively with friends,

• find data on the Web that you can import into a sheet,

• create a Google Form that you get others to fill out, and obtain a sheet out of
their responses

and so on. Let your imagination run wild! Once the data are in Pyret, it doesn’t
matter where they came from.

With tables, we begin to explore data that contain other (smaller) pieces of
data. We’ll refer to such data as structured data. Structured data organize their
inner data in a structured way (here, rows and columns). As with images, when

https://www.pyret.org/docs/latest/gdrive-sheets.html
https://www.pyret.org/docs/latest/gdrive-sheets.html

7.2. EXTRACTING ROWS AND CELL VALUES 89

we wrote code that reflected the structure of the final image, we will see that code
that works with tables also follows the structure of the data.

7.2 Extracting Rows and Cell Values

Given a table, we sometimes want to look up the value of a particular cell. We’ll
work with the following table showing the number of riders on a shuttle service
over several months:

shuttle = table: month, riders

row: "Jan", 1123

row: "Feb", 1045

row: "Mar", 1087

row: "Apr", 999

end

Do Now!

If you put this table in the definitions pane and press Run, what will be in
the Pyret directory once the interactions prompt appears? Would the column
names be listed in the directory?

As a reminder, the directory contains only those names that we assign values to
using the form name = . The directory here would contain shuttle, which would
be bound to the table (yes, the entire table would be in the directory!). The column
names would not have their own entries in the directory. If we did try to put a
column name in the directory, which value would it map to? There is a different
value in the column for every row. Names in the directory map to only one value.

Let’s explore how to extract the value of a given cell (row and column) in the
table. Concretely, assume we want to extract the number of riders in March (1087)
so we can use it in another computation. How do we do that?

Pyret (and most other programming languages designed for data analysis) or-
ganizes tables as collections of rows with shared columns. Given that organization,
we get to a specific cell by first isolating the row we are interested in, then retriev-
ing the contents of the cell.

Pyret numbers the rows of a table from top to bottom starting at 0 (most pro-
gramming languages use 0 as the first position in a piece of data, for reasons we
will see later). So if we want to see the data for March, we need to isolate row 2.
We write:

shuttle.row-n(2)

90 CHAPTER 7. INTRODUCTION TO TABULAR DATA

We use the period notation to dig into a piece of structured data. Here, we are
saying "dig into the shuttle table, extracting row number 2" (which is really the
third row since Pyret counts positions from 0).

If we run this expression at the prompt, we get

This is a new type of data called a Row. When Pyret displays a Row value, it
shows you the column names and the corresponding values within the row.

To extract the value of a specific column within a row, we write the row fol-
lowed by the name of the column (as a string) in square brackets. Here are two
equivalent ways of getting the value of the riders column from the row for March:

shuttle.row-n(2)["riders"]

march-row = shuttle.row-n(2)

march-row["riders"]

Do Now!

What names would be in the Pyret directory when using each of these ap-
proaches?

Once we have the cell value (here a Number), we can use it in any other com-
putation, such as

shuttle.row-n(2)["riders"] >= 1000

(which checks whether there were at least 1000 riders in March).

Do Now!

What do you expect would happen if you forgot the quotation marks and
instead wrote:

shuttle.row-n(2)[riders]

What would Pyret do and why?

7.3. FUNCTIONS OVER ROWS 91

7.3 Functions over Rows

Now that we have the ability to isolate Rows from tables, we can write functions
that ask questions about individual rows. We just saw an example of doing a com-
putation over row data, when we checked whether the row for March had more
than 1000 riders. What if we wanted to do this comparison for an arbitrary row of
this table? Let’s write a function! We’ll call it cleared-1K.

Let’s start with a function header and some examples:

fun cleared-1K(r :: Row) -> Boolean:

doc: "determine whether given row has at least 1000 riders"

...

where:

cleared-1K(shuttle.row-n(2)) is true

cleared-1K(shuttle.row-n(3)) is false

end

This shows you what examples for Row functions look like, as well as how we use
Row as an input type.

To fill in the body of the function, we extract the content of the "riders" cell
and compare it to 1000:

fun cleared-1K(r :: Row) -> Boolean:

doc: "determine whether given row has at least 1000 riders"

r["riders"] >= 1000

where:

cleared-1K(shuttle.row-n(2)) is true

cleared-1K(shuttle.row-n(3)) is false

end

92 CHAPTER 7. INTRODUCTION TO TABULAR DATA

Do Now!

Looking at the examples, both of them share the shuttle.row-n portion.
Would it have been better to instead make cleared-1K a function that takes
just the row position as input, such as:

fun cleared-1K(row-pos :: Number) -> Boolean:

...

where:

cleared-1K(2) is true

cleared-1K(3) is false

end

What are the benefits and limitations to doing this?

In general, the version that takes the Row input is more flexible because it can
work with a row from any table that has a column named "riders". We might
have another table with more columns of information or different data tables for
different years. If we modify cleared-1K to only take the row position as input,
that function will have to fix which table it works with. In contrast, our original
version leaves the specific table (shuttle) outside the function, which leads to
flexibility.

Exercise

Write a function is-winter that takes a Row with a "month" column as input
and produces a Boolean indicating whether the month in that row is one of
"Jan", "Feb", or "Mar".

Exercise

Write a function low-winter that takes in Rowwith both "month" and "riders"
columns and produces a Boolean indicating whether the row is a winter row
with fewer than 1050 riders.

Exercise

Practice with the program directory! Take a Row function and one of its where
examples, and show how the program directory evolves as you evaluate the
example.

7.4. PROCESSING ROWS 93

7.4 Processing Rows

So far, we have looked at extracting individual rows by their position in the table
and computing over them. Extracting rows by position isn’t always convenient:
we might have hundreds or thousands of rows, and we might not know where the
data we want even is in the table. We would much rather be able to write a small
program that identifies the row (or rows!) that meets a specific criterion. Pyret offers three different

notations for processing tables:
one uses functions, one uses
methods, and one uses a
SQL-like notation. This chapter
uses the function-based
notation. The SQL-like notation
and the methods-based notation
are shown in the Pyret
Documentation. To use the
function-based notation, you’ll
need to include the file specified
in the main narrative.

The rest of this section assumes that you have loaded the functions notation for
working with tables, using the following line in your Pyret file:

include shared-gdrive(

"dcic-2021",

"1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

Finding Rows

Imagine that we wanted to write a program to locate a row that has fewer than 1000

riders from our shuttle table. With what we’ve studied so far, how might we try
to write this? We could imagine using a conditional, like follows:

if shuttle.row-n(0)["riders"] < 1000:

shuttle.row-n(0)

else if shuttle.row-n(1)["riders"] < 1000:

shuttle.row-n(1)

else if shuttle.row-n(2)["riders"] < 1000:

shuttle.row-n(2)

else if shuttle.row-n(3)["riders"] < 1000:

shuttle.row-n(3)

else: ... # not clear what to do here

end

Do Now!

What benefits and limitations do you see to this approach?

There are a couple of reasons why we might not care for this solution. First, if
we have thousands of rows, this will be terribly painful to write. Second, there’s
a lot of repetition here (only the row positions are changing). Third, it isn’t clear
what to do if there aren’t any matching rows. In addition, what happens if there
are multiple rows that meet our criterion? In some cases, we might want to be
able to identify all of the rows that meet a condition and use them for a subsequent

94 CHAPTER 7. INTRODUCTION TO TABULAR DATA

computation (like seeing whether some months have more low-ridership days than
others).

This conditional is, however, the spirit of what we want to do: go through the
rows of the table one at a time, identifying those that match some criterion. We
just don’t want to be responsible for manually checking each row. Fortunately for
us, Pyret knows how to do that. Pyret knows which rows are in a given table. Pyret
can pull out those rows one position at a time and check a criterion about each one.

We just need to tell Pyret what criterion we want to use.
As before, we can express our criterion as a function that takes a Row and

produces a Boolean (a Boolean because our criterion was used as the question part
of an if expression in our code sketch). In this case, we want:

fun below-1K(r :: Row) -> Boolean:

doc: "determine whether row has fewer than 1000 riders"

r["riders"] < 1000

where:

below-1K(shuttle.row-n(2)) is false

below-1K(shuttle.row-n(3)) is true

end

Now, we just need a way to tell Pyret to use this criterion as it searches through
the rows. We do this with a function called filter-with which takes two inputs: the
table to process and the criterion to check on each row of the table:

filter-with(shuttle, below-1K)

Under the hood, filter-with works roughly like the if statement we outlined
above: it takes each row one at a time and calls the given criterion function on it.
But what does it do with the results?

If you run the above expression, you’ll see that filter-with produces a ta-
ble containing the matching row, not the row by itself. This behavior is handy if
multiple rows match the criterion. For example, try:

filter-with(shuttle, is-winter)

(using the is-winter function from an exercise earlier in this chapter). Now we
get a table with the two rows corresponding to winter months. If we want to be
able to name this table for use in future computations, we can do so with our usual
notation for naming values:

winter = filter-with(shuttle, is-winter)

7.4. PROCESSING ROWS 95

Ordering Rows

Let’s ask a new question: which winter month had the fewest number of riders?.
This question requires us to identify a specific row, namely, the winter row with
the smallest value in the "riders" column.

Do Now!

Can we do this with filter-with? Why or why not?

Think back to the if expression that motivated filter-with: each row is
evaluated independently of the others. Our current question, however, requires
comparing across rows. That’s a different operation, so we will need more than
filter-with.

Tools for analyzing data (whether programming languages or spreadsheets)
provide ways for users to sort rows of a table based on the values in a single col-
umn. That would help us here: we could sort the winter rows from smallest to
largest value in the "riders" column, then extract the "riders" value from the
first row. First, let’s sort the rows:

order-by(winter, "riders", true)

The order-by function takes three inputs: the table to sort (winter), the col-
umn to sort on ("riders"), and a Boolean to indicate whether we want to sort in
increasing order. (Had the third argument been false, the rows would be sorted in
decreasing order of the values in the named column.)

In the sorted table, the row with the fewest riders is in the first position. Our
original question asked us to lookup the month with the fewest riders. We did this
earlier.

Do Now!

Write the code to extract the name of the winter month with the fewest riders.

96 CHAPTER 7. INTRODUCTION TO TABULAR DATA

Here are two ways to write that computation:

order-by(winter, "riders", true).row-n(0)["month"]

sorted = order-by(winter, "riders", true)

least-row = sorted.row-n(0)

least-row["month"]

Do Now!

Which of these two ways do you prefer? Why?

Do Now!

How does each of these programs affect the program directory?

Note that this problem asked us to combine several actions that we’ve already
seen on rows: we identify rows from within a table (filter-with), order the
rows (order-by), extract a specific row (row-n), then extract a cell (with square
brackets and a column name). This is typical of how we will operate on tables,
combining multiple operations to compute a result (much as we did with programs
that manipulate images).

Adding New Columns

Sometimes, we want to create a new column whose value is based on those of
existing columns. For instance, our table might reflect employee records, and have
columns named hourly-wage and hours-worked, representing the corresponding
quantities. We would now like to extend this table with a new column to reflect
each employee’s total wage. Assume we started with the following table:

employees =

table: name, hourly-wage, hours-worked

row: "Harley", 15, 40

row: "Obi", 20, 45

row: "Anjali", 18, 39

row: "Miyako", 18, 40

end

The table we want to end up with is:

7.4. PROCESSING ROWS 97

employees =

table: name, hourly-wage, hours-worked, total-wage

row: "Harley", 15, 40, 15 * 40

row: "Obi", 20, 45, 20 * 45

row: "Anjali", 18, 39, 18 * 39

row: "Miyako", 18, 40, 18 * 40

end

(with the expressions in the total-wage column computed to their numeric equiv-
alents: we used the expressions here to illustrate what we are trying to do).

Previously, when we have had a computation that we performed multiple times,
we created a helper function to do the computation.

Do Now!

Propose a helper function for computing total wages given the hourly wage
and number of hours worked.

Perhaps you came up with something like:

fun compute-wages(wage :: Number, hours :: Number) -> Number:

wage * hours

end

which we could use as follows:

employees =

table: name, hourly-wage, hours-worked, total-wage

row: "Harley", 15, 40, compute-wages(15, 40)

row: "Obi", 20, 45, compute-wages(20, 45)

row: "Anjali", 18, 39, compute-wages(18, 39)

row: "Miyako", 18, 40, compute-wages(18, 40)

end

This is the right idea, but we can actually have this function do a bit more work
for us. The wage and hours values are in cells within the same row. So if we could
instead get the current row as an input, we could write:

fun compute-wages(r :: Row) -> Number:

r["hourly-wage"] * r["hours-worked"]

end

employees =

table: name, hourly-wage, hours-worked, total-wage

98 CHAPTER 7. INTRODUCTION TO TABULAR DATA

row: "Harley", 15, 40, compute-wages(<row0>)

row: "Obi", 20, 45, compute-wages(<row1>)

row: "Anjali", 18, 39, compute-wages(<row2>)

row: "Miyako", 18, 40, compute-wages(<row3>)

end

But now, we are writing calls to compute-wages over and over! Adding com-
puted columns is a sufficiently common operation that Pyret provides a table func-
tion called build-column for this purpose. We use it by providing the function to
use to populate values in the new column as an input:

fun compute-wages(r :: Row) -> Number:

doc: "compute total wages based on wage and hours worked"

r["hourly-wage"] * r["hours-worked"]

end

build-column(employees, "total-wage", compute-wages)

This creates a new column, total-wage, whose value in each row is the product
of the two named columns in that row. Pyret will put the new column at the right
end.

Calculating New Column Values

Sometimes, we just want to calculate new values for an existing column, rather than
create an entirely new column. Giving raises to employees is one such example.
Assume we wanted to give a 10% raise to all employees making less than 20 an
hour. We could write:

fun new-rate(rate :: Number) -> Number:

doc: "Raise rates under 20 by 10%"

if rate < 20:

rate * 1.1

else:

rate

end

where:

new-rate(20) is 20

new-rate(10) is 11

new-rate(0) is 0

end

7.5. EXAMPLES FOR TABLE-PRODUCING FUNCTIONS 99

fun give-raises(t :: Table) -> Table:

doc: "Give a 10% raise to anyone making under 20"

transform-column(t, "hourly-wage", new-rate)

end

Here, transform-column takes a table, the name of an existing column in the
table, and a function to update the value. The updating function takes the current
value in the column as input and produces the new value for the column as output.

Do Now!

Run give-raises on the employees table. What wage will show for "Miyako"
in the employees table after give-raises completes. Why?

Like all other Pyret Table operations, transform-column produces a new
table, leaving the original intact. Editing the original table could be problematic–
what if you made a mistake? How would you recover the original table in that case?
In general, producing new tables with any modifications, then creating a new name
for the updated table once you have the one you want, is a less error-prone way of
working with datasets.

7.5 Examples for Table-Producing Functions

How do we write examples for functions that produce tables? Conceptually, the
answer is simply "make sure you got the output table that you expected". Logisti-
cally, writing examples for table functions seems more painful because writing out
an expected output tables is more work than simply writing the output of a function
that produces numbers or strings. What can we do to manage that complexity?

Do Now!

How might you write the where block for give-raises?

Here are some ideas for writing the examples practically:

• Simplify the input table. Rather than work with a large table with all of the
columns you have, create a small table that has sufficient variety only in the
columns that the function uses. For our example, we might use:

wages-test =

table: hourly-wage

row: 15

row: 20

100 CHAPTER 7. INTRODUCTION TO TABULAR DATA

row: 18

row: 18

end

Do Now!

Would any table with a column of numbers work here? Or are there
some constraints on the rows or columns of the table?

The only constraint is that your input table has to have the column names
used in your function.

• Remember that you can write computations in the code to construct tables.
This saves you from doing calculations by hand.

where:

give-raises(wages-test) is

table: hourly-wage

row: 15 * 1.1

row: 20

row: 18 * 1.1

row: 18 * 1.1

end

This example shows that you can write an output table directly in the where:
block – the table doesn’t need to be named outside the function.

• Create a new table by taking rows from an existing table. If you were instead
writing examples for a function that involves filtering out rows of a table, it
helps to know how to create a new table using rows of an existing one. For
example, if we were writing a function to find all rows in which employees
were working exactly 40 hours, we’d like to make sure that the resulting
table had the first and fourth rows of the employees table. Rather than write
a new table expression to create that table, we could write it as follows:

emps-at-40 =

add-row(

add-row(employees.empty(),

employees.row-n(0)),

employees.row-n(3))

Here, employees.empty() creates a new, empty table with the same column
headers as employees. We’ve already seen how row-n extracts a row from

7.5. EXAMPLES FOR TABLE-PRODUCING FUNCTIONS 101

a table. The add-row function places the given row at the end of the given
table.

Another tip to keep in mind: when the only thing your function does is call a
built-in function like transform-column it usually suffices to write examples for
the function you wrote to compute the new column value. It is only when your code
is combining table operations, or doing more complex processing than a single call
to a built-in table operation that you really need to present your own examples to a
reader of your code.

102 CHAPTER 7. INTRODUCTION TO TABULAR DATA

Chapter 8

Processing Tables

In data analysis, we often work with large datasets, some of which were collected
by someone else. Datasets don’t necessarily come in a form that we can work with.
We might need the raw data pulled apart or condensed to coarser granularity. Some
data might be missing or entered incorrectly. On top of that, we have to plan for
long-term maintenance of our datasets or analysis programs. Finally, we typically
want to use visualizations to either communicate our data or to check for issues
with our data.

As a concrete example, assume that you are doing data analysis and support for
a company that manages ticket sales for events. People purchase tickets through
an online form. The form software creates a spreadsheet with all the entered data,
which is what you have to work with. Here’s a screenshot of a sample spreadsheet:

Do Now!

Take a look at the table. What do you notice that might affect using the data
in an analysis? Or for the operations for managing an event?

103

https://docs.google.com/spreadsheets/d/1DKngiBfI2cGTVEazFEyXf7H4mhl8IU5yv2TfZWv6Rc8

104 CHAPTER 8. PROCESSING TABLES

Some issues jump out quickly: the three in the "Num Tickets" column, dif-
ferences in capitalization in the "Discount Code" column, and the use of each
of "none" and blank spaces in the the "Discount Code" column (you may have
spotted additional issues). Before we do any analysis with this dataset, we need to
clean it up so that our analysis will be reliable. In addition, sometimes our dataset
is clean, but it needs to be adjusted or prepared to fit the questions we want to ask.
This chapter looks at both steps, and the programming techniques that are helpful
for them.

8.1 Cleaning Data Tables

Loading Data Tables
If you want to load a csv file,
first import it into a Google
Sheet, then load it from the
Google Sheet into Pyret.

The first step to working with an outside data source is to load it into your pro-
gramming and analysis environment. In Pyret, we do this using the load-table

command, which loads tables from Google Sheets.

include gdrive-sheets

ssid = "1DKngiBfI2cGTVEazFEyXf7H4mhl8IU5yv2TfZWv6Rc8"

event-data =

load-table: name, email, tickcount, discount, delivery

source: load-spreadsheet(ssid).sheet-by-name("Orig Data", true)

end

In this example:

• ssid is the identifier of the Google Sheet we want to load (the identifier is
the long sequence of letters and numbers in the Google Sheet URL).

• load-table says to create a Pyret table via loading. The sequence of names
following load-table is used for the column headers in the Pyret version of
the table. These do NOT have to match the names used in the Sheets version
of the table.

• source tells Pyret which sheet to load. The load-spreadsheet opera-
tion takes the Google Sheet identifier (here, ssid), as well as the name of
the individual worksheet (or tab) as named within the Google Sheet (here,
"Orig Data". The final boolean indicates whether there is a header row in
the table (true means there is a header row).

8.1. CLEANING DATA TABLES 105

When we try to run this code, Pyret complains about the three in the Num
Tickets column: it was expecting a number, but instead found a string. Pyret ex-
pects all columns to hold values of the same type. When loading a table from file,
Pyret bases the type of each column on the corresponding value in the first row of
the table.

This is an example of a data error that we have to fix in the source file, rather
than by using programs within Pyret. Within the source Google Sheet for this Not all languages will reject

programs on loading.
Languages embody
philosophies of what
programmers should expect
from them. Some will try to
make whatever the programmer
provided work, while others
will ask the programmer to fix
issues upfront. Pyret tends more
towards the latter philsophy,
while relaxing it in some places
(such as making types optional).

chapter, there is a separate worksheet/tab named "Data" in which the three has
been replaced with a number. If we use "Data" instead of "Orig Data" in the
above load-spreadsheet command, the event table loads into Pyret.

Exercise

Why might we have created a separate worksheet with the corrected data,
rather than just correct the original sheet?

Dealing with Missing Entries

When we create tables manually in Pyret, we have to provide a value for each cell
– there’s no way to "skip" a cell. When we create tables in a spreadsheet program
(such as Excel, Google Sheets, or something similar), it is possible to leave cells
completely empty. What happens when we load a table with empty cells into Pyret?

event-data =

load-table: name, email, tickcount, discount, delivery

source: load-spreadsheet(ssid).sheet-by-name("Data", true)

end

The original data file has a blank in the discount column. If we load the table
and look at how Pyret reads it in, we find something new in that column:

106 CHAPTER 8. PROCESSING TABLES

Note that those cells that had discount codes in them now have an odd-looking
notation like some("student"), while the cells that were empty contain none, but
none isn’t a string. What’s going on?

Pyret supports a special type of data called option. As the name suggests,
option is for data that may or may not be present. none is the value that stands for
"the data are missing". If a datum are present, it appears wrapped in some.

Do Now!

Look at the discount value for Ernie’s row: it reads some("none"). What
does this mean? How is this different from none (as in Sam’s row)?

In Pyret, the right way to address this is to indicate how to handle missing
values for each column, so that the data are as you expect after you read them in.
We do this with an additional aspect of load-table called sanitizers. Here’s how
we modify the code:

include data-source # to get the sanitizers

8.1. CLEANING DATA TABLES 107

event-data =

load-table: name, email, tickcount, discount, delivery

source: load-spreadsheet(ssid).sheet-by-name("Data", true)

sanitize name using string-sanitizer

sanitize email using string-sanitizer

sanitize tickcount using num-sanitizer

sanitize discount using string-sanitizer

sanitize delivery using string-sanitizer

end

Each of the sanitize lines tells Pyret what to do in the case of missing data in
the respective column. string-sanitizer says to load missing data as an empty
string (""). num-sanitizer says to load missing data as zero (0). The sanitizers
also handle simple data conversions. If the string-sanitizer were applied to a
column with a number (like 3), the sanitizer would convert that number to a string
(like "3"). Using the sanitizers, the event-data table reads in as follows:

Wait – wouldn’t putting types on the columns (like discount :: String) in

108 CHAPTER 8. PROCESSING TABLES

the load-table also solve this problem? No, because the type isn’t enough to
know which value should be the default! In some situations, you might want the
default value to be something other than an empty string or 0. Sanitizers actually
let you tailor this for yourself (a sanitizer is just a Pyret function: see the Pyret
documentation for details on sanitizer inputs).

Rule of thumb: when you load a table, use a sanitizer to guard against errors in
case the original sheet is missing data in some cells.

Normalizing Data

Next, let’s look at the "Discount Code" column. Our goal is to be able to ac-
curately answer the question "How many orders were placing under each discount
code". We would like to have the answer summarized in a table, where one column
names the discount code and another gives a count of the rows that used that code.

Do Now!

Examples first! What table do we want from this computation on the frag-
ment of table that we gave you?

You can’t answer this question without making some decisions about how to stan-
dardize the names and how to handle missing values. The term normalization
refers to making sure that a collection of data (such as a column) shares structure
and formatting. Our solution will aim to produce the following table, but you could
have made different choices from what we have here:

How do we get to this table? How do we figure this out if we aren’t sure?
Start by looking in the tables documentation for any library functions that might

help with this task. In the case of Pyret, we find:

count(tab :: Table, colname :: String) -> Table

8.1. CLEANING DATA TABLES 109

Produces a table that summarizes how many rows have

each value in the named column.

This sounds useful, as long as every column has a value in the "Discount code"

column, and that the only values in the column are those in our desired output table.
What do we need to do to achieve this?

• Get "none" to appear in every cell that currently lacks a value

• Convert all the codes that aren’t "none" to upper case

Fortunately, these tasks align with functions we’ve already seen how to use: each
one is an example of a column transformation, where the second one involves the
upper-case conversion functions from the String library.

We can capture these together in a function that takes in and produces a string:

fun cell-to-discount-code(str :: String) -> String:

doc: ‘‘‘uppercase all strings other than none,

convert blank cells to contain none‘‘‘

if (str == "") or (str == "none"):

"none"

else:

string-to-upper(str)

end

where:

cell-to-discount-code("") is "none"

cell-to-discount-code("none") is "none"

cell-to-discount-code("birthday") is "BIRTHDAY"

cell-to-discount-code("Birthday") is "BIRTHDAY"

end

Do Now!

Assess the examples included with cell-to-discount-code. Is this a good
set of examples, or are any key ones missing?

The current examples consider different capitalizations for "birthday", but not
for "none". Unless you are confident that the data-gathering process can’t produce
different capitalizations of "none", we should include that as well:

cell-to-discount-code("NoNe") is "none"

Oops! If we add this example to our where block and run the code, Pyret reports
that this example fails.

110 CHAPTER 8. PROCESSING TABLES

Do Now!

Why did the "NoNe" case fail?

Since we check for the string "none" in the if expression, we need to normalize
the input to match what our if expression expects. Here’s the modified code, on
which all the examples pass.

fun cell-to-discount-code(str :: String) -> String:

doc: ‘‘‘uppercase all strings other than none,

convert blank cells to contain none‘‘‘

if (str == "") or (string-to-lower(str) == "none"):

"none"

else:

string-to-upper(str)

end

where:

cell-to-discount-code("") is "none"

cell-to-discount-code("none") is "none"

cell-to-discount-code("NoNe") is "none"

cell-to-discount-code("birthday") is "BIRTHDAY"

cell-to-discount-code("Birthday") is "BIRTHDAY"

end

Using this function with transform-column yields a table with a standard-
ized formatting for discount codes (reminder that you need to be working with the
function operators for tables for this to work):

include shared-gdrive(

"dcic-2021",

"1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

discount-fixed =

transform-column(event-data, "discount", cell-to-discount-code)

Exercise

Try it yourself: normalize the "delivery" column so that all "yes" values
are converted to "email".

Now that we’ve cleaned up the codes, we can proceed to using the "count"

function to extract our summary table:

https://hackmd.io/@cs111/table

8.1. CLEANING DATA TABLES 111

count(discount-fixed, "discount")

This produces the following table:

Do Now!

What’s with that first row, with the discount code " "? Where might that
have come from?

Maybe you didn’t notice this before (or wouldn’t have noticed it within a larger
table), but there must have been a cell of the source data with a string of blanks,
rather than missing content. How do we approach normalization to avoid missing
cases like this?

Normalization, Systematically

As the previous example showed, we need a way to think through potential normal-
izations systematically. Our initial discussion of writing examples gives an idea of
how to do this. One of the guidelines there says to think about the domain of the
inputs, and ways that inputs might vary. If we apply that in the context of loaded
datasets, we should think about how the original data were collected.

Do Now!

Based on what you know about websites, where might the event code con-
tents come from? How might they have been entered? What do thses tell you
about different plausible mistakes in the data?

In this case, for data that came from a web-based form (as we revealed at the
beginning), the data was likely entered in one of two ways:

112 CHAPTER 8. PROCESSING TABLES

• via a drop-down menu

• in a text-entry box

A drop-down menu automatically normalizes the data, so that’s not a plausible
source (this is why you should use drop-downs on forms when you want users to
select from a fixed collection of options). So let’s assume this is from a text-entry
box.

A text-entry box means that any sort of typical human typing error could show
up in your data: swapped letters, missing letters, leading spaces, capitalization, etc.
You could also get data where someone just typed the wrong thing (or something
random, just to see what your form would do).

Do Now!

Which of swapped letters, missing errors, and random text do you think a
program can correct for automatically?

Swapped and missing letters are the sorts of things a spell-checker might be able
to fix (especially if the program knew all of the valid discount codes). Random
junk, by definition, is random. There, you’d have to talk to the events company to
decide how they wanted those handled (convert them to "none", reach out to the
customer, etc. – these are questions of policy, not of programming).

But really, the moral of this is to just use drop-downs or other means to prevent
incorrect data at the source whenever possible.

As you get more experience with programming, you will also learn to anticipate
certain kinds of errors. Issues such as cells that appear empty will become second
nature once you’ve processed enough tables that have them, for example. Needing
to anticipate data errors is one reason why good data scientists have to understand
the domain that they are working in.

The takeaway from this is how we talked through what to expect. We thought
about where the data came from, and what errors would be plausible in that sit-
uation. Having a clear error model in mind will help you develop more robust
programs. In fact, such adversarial thinking is a core skill of working in security,
but now we’re getting ahead of ourselves.

8.2. TASK PLANS 113

Exercise

In spreadsheets, cells that appear empty sometimes have actual content, in the
form of strings made up of spaces: both "" and " " appear the same when we
look at a spreadsheet, but they are actually different values computationally.

How would you modify cell-to-discount-code so that strings con-
taining only spaces were also converted to "none"? (Hint: look for string-replace
in the strings library.)

Using Programs to Detect Data Errors

Sometimes, we also look for errors by writing functions to check whether a table
contains unexpected values. Let’s consider the "email" column: that’s a place
where we should be able to write a program to flag any rows with invalid email
addresses. What makes for a valid email address? Let’s consider two rules:

• Valid email addresses should contain an @ sign

• Valid email addresses should end in one of ".com", ".edu" or ".org"

This is admittedly an outdated,
limited, and US-centric
definition of email addresses,
but expanding the formats does
not fundamentally change the
point of this section.

Exercise

Write a function is-email that takes a string and returns a boolean indi-
cating whether the string satisfies the above two rules for being valid email
addresses. For a bit more of a challenge, also include a rule that there must
be some character between the @ and the .-based ending.

Assuming we had such a function, a routine filter-with could then produce
a table identifying all rows that need to have their email addresses corrected. The
point here is that programs are often helpful for finding data that need correcting,
even if a program can’t be written to perform the fixing.

8.2 Task Plans

Before we move on, it’s worth stepping back to reflect on our process for produc-
ing the discount-summary table. We started from a concrete example, checked the
documentation for a built-in function that might help, then manipulated our data
to work with that function. These are part of a more general process that applies
to data and problems beyond tables. We’ll refer to this process as task planning.

114 CHAPTER 8. PROCESSING TABLES

Specifically, a task plan is a sequence of steps (tasks) that decompose a computa-
tional problem into smaller steps (sub-tasks). A useful task plan contains sub-tasks
that you know how to implement, either by using a built-in function or writing your
own. There is no single notation or format for task plans. For some problems, a
bulleted-list of steps will suffice. For others, a diagram showing how data trans-
form through a problem is more helpful. This is a personal choice tailored to a
specific problem. The goal is simply to decompose a problem into something of a
programming to-do list, to help you manage the process.

Strategy: Creating a Task Plan

1. Develop a concrete example showing the desired output on a given
input (you pick the input: a good one is large enough to show different
features of your inputs, but small enough to work with manually during
planning. For table problems, roughly 4-6 rows usually works well in
practice).

2. Mentally identify functions that you already know (or that you find
in the documentation) that might be useful for transforming the input
data to the output data.

3. Develop a sequence of steps—whether as pictures, textual descriptions
of computations, or a combination of the two—that could be used to
solve the problem. If you are using pictures, draw out the intermediate
data values from your concrete example and make notes on what oper-
ations might be useful to get from one intermediate value to the next.
The functions you identified in the previous step should show up here.

4. Repeat the previous step, breaking down the subtasks until you believe
you could write expressions or functions to perform each step or data
transformation.

Here’s a diagram-based task plan for the discount-summary program that we
just developed. We’ve drawn this on paper to highlight that task plans are not
written within a programming environment.

8.2. TASK PLANS 115

Once you have a plan, you turn it into a program by writing expressions and
functions for the intermediate steps, passing the output of one step as the input of
the next. Sometimes, we look at a problem and immediately know how to write
the code for it (if it is a kind of problem that you’ve solved many times before).
When you don’t immediately see the solution, use this process and break down the
problem by working with concrete examples of data.

Exercise

You’ve been asked to develop a program that identifies the student with the
largest improvement from the midterm to the final exam in a course. Your
input table will have columns for each exam as well as for student names.
Write a task plan for this problem.

Some task plans involve more than just a sequence of table values. Sometimes,
we do multiple transformations to the same table to extract different pieces of data,
then compute over those data. In that case, we draw our plan with branches that
show the different computations that come together in the final result. Continuing
with the gradebook, for example, you might be asked to write a program to compute
the difference between the largest and lowest scores on the midterm. That task plan

116 CHAPTER 8. PROCESSING TABLES

might look like:

Exercise

You’ve been given a table of weather data that has columns for the date,
amount of precipitation, and highest temperature for the day. You’ve been
asked to compute whether there were more snowy days in January than in
February, where a day is snowy if the highest temperature is below freezing
and the precipitation was more than zero.

The takeaway of this strategy is easy to state:
If you aren’t sure how to approach a problem, don’t start by trying to

write code. Plan until you understand the problem.
Newer programmers often ignore this advice, assuming that the fastest way to

produce working code for a programming problem is to start writing code (espe-
cially if you see classmates who are able to jump directly to writing code). Experi-
enced programmers know that trying to write all the code before you’ve understood
the problem will take much longer than stepping back and understanding the prob-
lem first. As you develop your programming skills, the specific format of your task
plans will evolve (and indeed, we will see some cases of this later in the book as
well). But the core idea is the same: use concrete examples to help identify the
intermediate computations that will need, then convert those intermediate compu-
tations to code after or as you figure them out.

8.3 Preparing Data Tables

Sometimes, the data we have is clean (in that we’ve normalized the data and dealt
with errors), but it still isn’t in a format that we can use for the analysis that we want

8.3. PREPARING DATA TABLES 117

to run. For example, what if we want to look at the distribution of small, medium,
and large ticket orders? In our current table, we have the number of tickets in an
order, but not an explicit label on the scale of that order. If we wanted to produce
some sort of chart showing our order scales, we will need to make those labels
explicit.

Creating bins

The act of reducing one set of values (such as the tickcounts values) into a
smaller set of categories (such as small/medium/large for orders, or morning/after-
noon/etc. for timestamps) is known as binning. The bins are the categories. To put
rows into bins, we create a function to compute the bin for a raw data value, then
create a column for the new bin labels.

Here’s an example of creating bins for the scale of the ticket orders:

fun order-scale-label(r :: Row) -> String:

doc: "categorize the number of tickets as small, medium, large"

numtickets = r["tickcount"]

if numtickets >= 10: "large"

else if numtickets >= 5: "medium"

else: "small"

end

end

order-bin-data =

build-column(cleaned-event-data, "order-scale", order-scale-label)

Splitting Columns

The events table currently uses a single string to represent the name of a person.
This single string is not useful if we want to sort data by last names, however. Split-
ting one column into several columns can be a useful step in preparing a dataset
for analysis or use. Programming languages usually provide a variety of opera-
tions for splitting apart strings: Pyret has operations called string-split and
string-split-all that split one string into several around a given character (like
a space). You could, for example, write string-split("Josie Zhao", " ") to
extract "Josie" and "Zhao" as separate strings.

118 CHAPTER 8. PROCESSING TABLES

Exercise

Write a task plan (not the code, just the plan) for a function that would re-
place the current name column in the events table with two columns called
last-name and first-name.

Do Now!

Write down a collection of specific name strings on which you would want
to test a name-splitting function.

Hopefully, you at least looked at the table and noticed that we have one indi-
vidual, "Zander" whose entire name is a single string, rather than having both a
first name and a last name. How would we handle middle names? Or names from
cultures where a person’s name has the last names of both of their parents as part
of their name? Or cultures that put the family name before the given name? Or
cultures where names are not written as in the Latin alphabet. This is definitely
getting more complicated.

Responsible Computing: Representing Names

Representing names as data is heavily context- and culture-dependent. Think
carefully about the individuals your dataset needs to include and design your
table structure accordingly. It’s okay to have a table structure that excludes
names outside of the population you are trying to represent. The headache
comes from realizing later that your dataset or program excludes data that
need to be supports. In short, examine your table structure for assumptions it
makes about your data and choose table structure after thinking about which
observations or individuals it needs to represent.

For a deeper look at the complexity of representing real-world names
and dates in programs, search for “falsehoods programmers believe about
...”, which turns up articles such as Falsehoods Programmers Believe About
Names and Falsehoods Programmers Believe About Time.

Exercise

Write a program that filters a table to only include rows in which the name is
not comprised of two strings separated by a space.

https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://www.kalzumeus.com/2010/06/17/falsehoods-programmers-believe-about-names/
https://infiniteundo.com/post/25509354022/more-falsehoods-programmers-believe-about-time

8.4. MANAGING AND NAMING DATA TABLES 119

Exercise

Write a program that takes a table with a name column in "first-name last-name"

format and replaces the name column with two columns called last-name

and first-name. To extract the first- and last-names from a single name
string, use:

string-split(name-string, " ").get(0) # get first name

string-split(name-string, " ").get(1) # get last name

8.4 Managing and Naming Data Tables

At this point, we have worked with several versions of the events table:

• The original dataset that we tried to load

• The new sheet of the dataset with manual corrections

• The version with the discount codes normalized

• Another version that normalized the delivery mode

• The version extended with the order-scale column

Which of these versions should get explicit names within our code file?
Usually, we keep both the original raw source datasheet, as well as the copy

with our manual corrections. Why? In case we ever have to look at the original
data again, either to identify kinds of errors that people were making or to apply
different fixes.

For similar reasons, we want to keep the cleaned (normalized) data separate
from the version that we initially loaded. Fortunately, Pyret helps with this since
it creates new tables, rather than modify the prior ones. If we have to normalize
multiple columns, however, do we really need a new name for every intermediate
table?

As a general rule, we usually maintain separate names for the initially-loaded
table, the cleaned table, and for significant variations for analysis purposes. In our
code, this might mean having names:

event-data = ... # the loaded table

cleaned-event-data =

transform-column(

120 CHAPTER 8. PROCESSING TABLES

transform-column(event-data, "discount", cell-to-discount-code),

"delivery", yes-to-email)

order-bin-data =

build-column(

cleaned-event-data, "order-scale", order-scale-label)

where yes-to-email is a function we have not written, but that might have nor-
malized the "yes" value in the "delivery" column. Note that we applied each of
the normalizations in sequence, naming only the final table with all normalizations
applied. Having only a few table names will reduce your own confusion whenIn professional practice, if you

were working with a very large
dataset, you might just write the
cleaned dataset out to a file, so
that you loaded only the clean
version during analysis. We
will look at writing to file later.

working with your files. If you work on multiple data-analyses, developing a con-
sistent strategy for how you name your tables will likely help you better manage
your code as you switch between projects.

8.5 Visualizations and Plots

Now that our data are cleaned and prepared, we are ready to analyze it. What might
we want to know? Perhaps we want to know which discount code has been used
most often. Maybe we want to know whether the time when a purchase was made
correlates with how many tickets people buy. There’s a host of different kinds of
visualizations and plots that people use to summarize data.

Which plot type to use depends on both the question and the data at hand.
The nature of variables in a dataset helps determine relevant plots or statistical
operations. An attribute or variable in a dataset (i.e., a single column of a table)
can be classified as one of several different kinds, including:

• quantitative: a variable whose values are numeric and can be ordered with a
consistent interval between values. They are meaningful to use in computa-
tions.

• categorical: a variable with a fixed set of values. The values may have an
order, but there are no meaningful computational operations between the val-
ues other than ordering. Such variables usually correspond to characteristics
of your samples.

Do Now!

Which kind of variable are last names? Grades in courses? Zipcodes?

Common plots and the kinds of variables they require include:

8.5. VISUALIZATIONS AND PLOTS 121

• Scatterplots show relationships between two quantitative variables, with one
variable on each axis of a 2D chart.

• Frequency Bar charts show the frequency of each categorical value within a
column of a dataset.

• Histograms segment quantitative data into equal-size intervals, showing the
distribution of values across each interval.

• Pie charts show the proportion of cells in a column across the categorical
values in a dataset.

Do Now!

Map each of the following questions to a chart type, based on the kinds of
variables involved in the question:

• Which discount code has been used most often?

• Is there a relationship between the number of tickets purchased in one
order and the time of purchase?

• How many orders have been made for each delivery option?

For example, we might use a frequency-bar-chart to answer the third question.
Based on the Table documentation, we would generate this using the following
code (with similar style for the other kinds of plots):

freq-bar-chart(cleaned-event-data, "delivery")

Which yields the following chart (assuming we had not actually normalized
the contents of the "delivery" column):

122 CHAPTER 8. PROCESSING TABLES

Whoa – where did that extra "email" column come from? If you look closely,
you’ll spot the error: in the row for "Alvina", there’s a typo ("emall" with an l

instead of an i) in the discount column (drop-down menus, anyone?).
The lesson here is that plots and visualizations are valuable not only in the

analysis phase, but also early on, when we are trying to sanity check that our data
are clean and ready to use. Good data scientists never trust a dataset without first
making sure that the values make sense. In larger datasets, manually inspecting all
of the data is often infeasible. But creating some plots or other summaries of the
data is also useful for identifying errors.

8.6 Summary: Managing a Data Analysis

This chapter has given you a high-level overview of how to use coding for manag-
ing and processing data. When doing any data analysis, a good data practitioner

8.6. SUMMARY: MANAGING A DATA ANALYSIS 123

undergoes several steps:

1. Think about the data in each column: what are plausible values in the col-
umn, and what kinds of errors might be in that column based on what you
know about the data collection methods?

2. Check the data for errors, using a combination of manual inspection of the
table, plots, and filter-with expressions that check for unexpected values.
Normalize or correct the data, either at the source (if you control that) or via
small programs.

3. Store the normalized/cleaned data table, either as a name in your program,
or by saving it back out to a new file. Leave the raw data intact (in case you
need to refer to the original later).

4. Prepare the data based on the questions you want to ask about it: compute
new columns, bin existing columns, or combine data from across tables. You
can either finish all preparations and name the final table, or you can make
separate preparations for each question, naming the per-question tables.

5. At last, perform your analysis, using the statistical methods, visualizations,
and interpretations that make sense for the question and kinds of variables
involved. When you report out on the data, always store notes about the
file that holds your analysis code, and which parts of the file were used to
generate each graph or interpretation in your report.

There’s a lot more to managing data and performing analysis than this book
can cover. There are entire books, degrees, and careers in each of the management
of data and its analysis. One area we have not discussed, for example, is machine
learning, in which programs (that others have written) are used to make predic-
tions from datasets (in contrast, this chapter has focused on projects in which you
will use summary statistics and visualizations to perform analysis). These skills
covered in this chapter are all prerequisites for using machine learning effectively
and responsibly. But we still have much more to explore and understand about data
themselves, which we turn to in the coming chapters. Onward!

124 CHAPTER 8. PROCESSING TABLES

Responsible Computing: Bias in Statistical Prediction

In a book that is discussing data and social responsibility, we would be re-
miss in not at least mentioning some of the many issues that arise when using
data to make predictions (via techniques like machine learning). Some issues
arise from problems with the data themselves (e.g., whether samples are rep-
resentative, or whether correlations between variables lead to discrimination
as in algorithmic hiring). Others arise with how data collected for one pur-
pose is misused to make predictions for another. Still more arise with the
interpretation of results.

These are all rich topics. There are myriad articles which you could read
at this point to begin to understand the pitfalls (and benefits) of algorithmic
decision making. This book will focus instead on issues that arise from the
programs we are teaching you to write, leaving other courses, or the interests
of instructors, to augment the material as appropriate for readers’ contexts.

Chapter 9

From Tables to Lists

Previously [chapter 7] we began to process collective data in the form of tables.
Though we saw several powerful operations that let us quickly and easily ask so-
phisticated questions about our data, they all had two things in common. First, all
were operations by rows. None of the operations asked questions about an entire
column at a time. Second, all the operations not only consumed but also produced
tables. However, we already know [chapter 3] there are many other kinds of data,
and sometimes we will want to compute one of them. We will now see how to
achieve both of these things, introducing an important new type of data in the pro-
cess.

9.1 Basic Statistical Questions

There are many more questions we might want to ask of our events data. For
instance:

• The most-frequently used discount code.

• The average number of tickets per order.

• The largest ticket order.

• The most common number of tickets in an order.

• The collection of unique discount codes that were used (many might have
been available).

• The collection of distinct email addresses associated with orders, so we can
contact customers (some customers may have placed multiple orders).

125

126 CHAPTER 9. FROM TABLES TO LISTS

• Which school lead to the largest number of orders with a "STUDENT" dis-
count.

Notice the kinds of operations that we are talking about: computing the maximum,
minimum, average, median, and other basic statistics.Pyret has several built-in

statistics functions in the math
and statistics packages. Do Now!

Think about whether and how you would express these questions with the
operations you have already seen.

In each of these cases, we need to perform a computation on a single column
of data (even in the last question about the "STUDENT" discount, as we would filter
the table to those rows, then do a computation over the email column). In order to
capture these in code, we need to extract a column from the table.

For the rest of this chapter, we will work with a cleaned copy of the event-data
from the previous chapter. The cleaned data, which applies the transformations at
the end of the previous chapter, is in a different tab of the same Google Sheet as
the other versions of the event data.

ssid = "1DKngiBfI2cGTVEazFEyXf7H4mhl8IU5yv2TfZWv6Rc8"

cleaned-data =

load-table: name, email, tickcount, discount, delivery

source: load-spreadsheet(ssid).sheet-by-name("Cleaned", true)

sanitize name using string-sanitizer

sanitize email using string-sanitizer

sanitize tickcount using num-sanitizer

sanitize discount using string-sanitizer

sanitize delivery using string-sanitizer

end

9.2 Extracting a Column from a Table

Our collection of table functions includes one that we haven’t yet used, called
select-columns. As the name suggests, this function produces a new table con-
taining only certain columns from an existing table. Let’s extract the tickcount

column so we can compute some statistics over it. We use the following expres-
sion:

select-columns(cleaned-data, [list: "tickcount"])

http://www.pyret.org/docs/latest/math.html
http://www.pyret.org/docs/latest/statistics.html

9.2. EXTRACTING A COLUMN FROM A TABLE 127

This focuses our attention on the numeric ticket sales, but we’re still stuck with
a column in a table, and none of the other tables functions let us do the kinds of
computations we might want over these numbers. Ideally, we want the collection
of numbers on their own, without being wrapped up in the extra layer of table cells.

In principle, we could have a collection of operations on a single column. In
some languages that focus solely on tables, such as SQL, this is what you’ll find.
However, in Pyret we have many more kinds of data than just columns (as we’ll
soon see [chapter 11], we can even create our own!), so it makes sense to leave the
gentle cocoon of tables sooner or later. An extracted column is a more basic kind
of datum called a list, which can be used to represent a sequence of data outside of
a table.

Just as we have used the notation .row-n to pull a single row from a table, we
use a similar dot-based notion to pull out a single column. Here’s how we extract
the tickcount column:

cleaned-data.get-column("tickcount")

In response, Pyret produces the following value:

[list: 2, 1, 5, 0, 3, 10, 3]

https://en.wikipedia.org/wiki/SQL

128 CHAPTER 9. FROM TABLES TO LISTS

Now, we seem to have only the values that were in the cells in the column,
without the enclosing table. Yet the numbers are still bundled up, this time in the
[list: ...] notation. What is that?

9.3 Understanding Lists

A list has much in common with a single-column table:

• The elements have an order, so it makes sense to talk about the “first”, “sec-
ond”, “last”—and so on—element of a list.

• All elements of a list are expected to have the same type.

The crucial difference is that a list does not have a “column name”; it is anonymous.
That is, by itself a list does not describe what it represents; this interpretation is
done by our program.

Lists as Anonymous Data

This might sound rather abstract—and it is—but this isn’t actually a new idea in
our programming experience. Consider a value like 3 or -1: what is it? It’s the
same sort of thing: an anonymous value that does not describe what it represents;
the interpretation is done by our program. In one setting 3 may represent an age, in
another a play count; in one setting -1 may be a temperature, in another the average
of several temperatures. Similarly with a string: Is "project" a noun (an activity
that one or more people perform) or a verb (as when we display something on a
screen)? Likewise with images and so on. In fact, tables have been the exception
so far in having description built into the data rather than being provided by a
program!

This genericity is both a virtue and a problem. Because, like other anonymous
data, a list does not provide any interpretation of its use, if we are not careful we
can accidentally mis-interpret the values. On the other hand, it means we can use
the same datum in several different contexts, and one operation can be used in
many settings.

Indeed, if we look at the list of questions we asked earlier, we see that there
are several common operations—maximum, minimum, average, and so on—that
can be asked of a list of values without regard for what the list represents (heights,
ages, playcounts). In fact, some are specific to numbers (like average) while some
(like maximum) can be asked of any type on which we can perform a comparison
(like strings).

9.4. OPERATING ON LISTS 129

Creating Literal Lists

We have already seen how we can create lists from a table, using get-column. As
you might expect, however, we can also create lists directly:

[list: 1, 2, 3]

[list: -1, 5, 2.3, 10]

[list: "a", "b", "c"]

[list: "This", "is", "a", "list", "of", "words"]

Of course, lists are values so we can name them using variables—

shopping-list = [list: "muesli", "fiddleheads"]

—pass them to functions (as we will soon see), and so on.

Do Now!

Based on these examples, can you figure out how to create an empty list?

As you might have guessed, it’s [list:] (the space isn’t necessary, but it’s a
useful visual reminder of the void).

9.4 Operating on Lists

Built-In Operations on Lists of Numbers

Pyret handily provides a useful set of operations we can already perform on lists.
As you might have guessed, we can already compute most of the answers we’ve The lists documentation

describes these operations.asked for at the start of the chapter. First we need to include some libraries that
contain useful functions:

import math as M

import statistics as S

We can then access several useful functions:

tickcounts = cleaned-data.get-column("tickcount")

M.max(tickcounts) # largest number in a list

M.sum(tickcounts) # sum of numbers in a list

S.mean(tickcounts) # mean (average) of numbers in a list

S.median(tickcounts) # median of numbers in a list

The M. notation means "the function inside the library M. The import statement
in the above code gave the name M to the math library.

https://www.pyret.org/docs/latest/lists.html

130 CHAPTER 9. FROM TABLES TO LISTS

Built-In Operations on Lists in General

Some of the useful computations in our list at the start of the chapter involved the
discount column, which contains strings rather than numbers. Specifically, let’s
consider the following question:

• Compute the collection of unique discount codes that were used (many might
have been available).

None of the table functions handle a question like this. However, this is a
common kind of question to ask about a collection of values (How many unique
artists are in your playlist? How many unique faculty are teaching courses?). As
such, Pyret (as most languages) provides a way to identify the unique elements of
a list. Here’s how we get the list of all discount codes that were used in our table:

import lists as L

codes = cleaned-data.get-column("discount")

L.distinct(codes)

The distinct function produces a list of the unique values from the input list:
every value in the input list appears exactly once in the output list. For the above
code, Pyret produces:

[list: "BIRTHDAY", "STUDENT", "none"]

What if we wanted to exclude "none" from that list? After all, "none" isn’t an
actual discount code, but rather one that we introduced while cleaning up the table.
Is there a way to easily remove "none" from the list?

There are two ways we could do it. In the Pyret lists documentation, we find a
function called remove, which removes a specific element from a list:

››› L.remove(L.distinct(codes), "none")

[list: "BIRTHDAY", "STUDENT"]

But this operation should also sound familiar: with tables, we used filter-with
to keep only those elements that meet a specific criterion. The filtering idea is so
common that Pyret (and most other languages) provide a similar operation on lists.
In the case of the discount codes, we could also have written:

fun real-code(c :: String) -> Boolean:

not(c == "none")

end

L.filter(real-code, L.distinct(codes))

9.4. OPERATING ON LISTS 131

The difference between these two approaches is that filter is more flexible:
we can check any characteristic of a list element using filter, but remove only
checks whether the entire element is equal to the value that we provide. If instead
of removing the specific string "none", we had wanted to remove all strings that
were in all-lowercase, we would have needed to use filter.

Exercise

Write a function that takes a list of words and removes those words in which
all letters are in lowercase. (Hint: combine string-to-lower and ==).

An Aside on Naming Conventions

Our use of the plural codes for the list of values in the column named discount

(singular) is deliberate. A list contains multiple values, so a plural is appropriate.
In a table, in contrast, we think of a column header as naming a single value that
appears in a specific row. Often, we speak of looking up a value in a specific row
and column: the singular name for the column supports thinking about lookup in
an individual row.

Getting Elements By Position

Let’s look at a new analysis question: the events company recently ran an adver-
tising campaign on web.com, and they are curious whether it paid off. To do this,
they need to determine how many sales were made by people with web.com email
addresses.

Do Now!

Propose a task plan (section 8.2) for this computation.

Here’s a proposed plan, annotated with how we might implement each part:

1. Get the list of email addresses (use get-column)

2. Extract those that came from web.com (use L.filter)

3. Count how many email addresses remain (using L.length, which we hadn’t
discussed yet, but it is in the documentation)

(As a reminder, unless you immediately see how to solve a problem, write out
a task plan and annotate the parts you know how to do. It helps break down a
programming problem into more manageable parts.)

132 CHAPTER 9. FROM TABLES TO LISTS

Let’s discuss the second task: identifying messages from web.com. We know
that email addresses are strings, so if we could determine whether an email string
ends in @web.com, we’d be set. You could consider doing this by looking at the
last 7 characters of the email string. Another option is to use a string operation that
we haven’t yet seen called string-split-all, which splits a string into a list of
substrings around a given character. For example:

››› string-split-all("this-has-hyphens", "-")

[list: "this", "has", "hyphens"]

››› string-split("bonnie@pyret.org", "@")

[list: "bonnie", "pyret.org"]

This seems pretty useful. If we split each email string around the @ sign, then
we can check whether the second string in the list is web.com (since email ad-
dresses should have only one @ sign). But how would we get the second element
out of the list produced by string-split-all? Here we dig into the list, as we
did to extract rows from tables, this time using the get operation.

››› string-split("bonnie@pyret.org", "@").get(1)

"pyret.org"

Do Now!

Why do we use 1 as the input to get if we want the second item in the list?

Here’s the complete program for doing this check:

fun web-com-address(email :: String) -> Boolean:

doc: "determine whether email is from web.com"

string-split(email, "@").get(1) == "web.com"

where:

web-com-address("bonnie@pyret.org") is false

web-com-address("parrot@web.com") is true

end

emails = cleaned-data.get-column("email")

L.length(L.filter(web-com-address, emails))

9.4. OPERATING ON LISTS 133

Exercise

What happens if there is a malformed email address string that doesn’t con-
tain the @ string? What would happen? What could you do about that?

Transforming Lists

Imagine now that we had a list of email addresses, but instead just wanted a list
of usernames. This doesn’t make sense for our event data, but it does make sense
in other contexts (such as connecting messages to folders organized by students’
usernames).

Specifcally, we want to start with a list of addresses such as:

[list: "parrot@web.com", "bonnie@pyret.org"]

and convert it to

[list: "parrot", "bonnie"]

Do Now!

Consider the list functions we have seen so far (distinct, filter, length)
– are any of them useful for this task? Can you articulate why?

One way to articulate a precise answer to this is think in terms of the inputs
and outputs of the existing functions. Both filter and distinct return a list of
elements from the input list, not transformed elements. length returns a number,
not a list. So none of these are appropriate.

This idea of transforming elements is similar to the transform-column op-
eration that we previously saw on tables. The corresponding operation on lists is
called map. Here’s an example:

fun extract-username(email :: String) -> String:

doc: "extract the portion of an email address before the @ sign"

string-split(email, "@").get(0)

where:

extract-username("bonnie@pyret.org") is "bonnie"

extract-username("parrot@web.com") is "parrot"

end

L.map(extract-username,

[list: "parrot@web.com", "bonnie@pyret.org"])

134 CHAPTER 9. FROM TABLES TO LISTS

Recap: Summary of List Operations

At this point, we have seen several useful built-in functions for working with lists:

• filter :: (A -> Boolean), List<A> -> List<A>, which produces a
list of elements from the input list on which the given function returns true.

• map :: (A -> B), List<A> -> List, which produces a list of the
results of calling the given function on each element of the input list.

• distinct :: List<A> -> List<A>, which produces a list of the unique
elements that appear in the input list.

• length :: List<A> -> Number, which produces the number of elements
in the input list.

Here, a type such as List<A> says that we have a list whose elements are of
some (unspecified) type which we’ll call A. A type variable such as this is useful
when we want to show relationships between two types in a function contract.
Here, the type variable A captures that the type of elements is the same in the input
and output to filter. In map, however, the type of element in the output list could
differ from that in the input list.

One additional built-in function that is quite useful in practice is:

• member :: (A -> Boolean), Any -> Boolean, which determines whether
the given element is in the list. We use the type Any when there are no con-
straints on the type of value provided to a function.

Many useful computations can be performed by combining these operations.

9.5. LAMBDA: ANONYMOUS FUNCTIONS 135

Exercise

Assume you used a list of strings to represent the ingredients in a recipe. Here
are three examples:

stir-fry =

[list: "peppers", "pork", "onions", "rice"]

dosa = [list: "rice", "lentils", "potato"]

misir-wot =

[list: "lentils", "berbere", "tomato"]

Write the following functions on ingredient lists:

• recipes-uses, which takes an ingredient list and an ingredient and
determines whether the recipe uses the ingredient.

• make-vegetarian, which takes an ingredient list and replaces all meat
ingredients with "tofu". Meat ingredients are "pork", "chicken",
and "beef".

• protein-veg-count, which takes an ingredient list and determines
how many ingredients are in the list that aren’t "rice" or "noodles".

Exercise

More challenging: Write a function that takes two ingredient lists and returns
all of the ingredients that are common to both lists.

Exercise

Another more challenging: Write a function that takes an ingredient and a
list of ingredient lists and produces a list of all the lists that contain the given
ingredient.

Hint: write examples first to make sense of the problem as needed.

9.5 Lambda: Anonymous Functions

Let’s revisit the program we wrote earlier in this chapter for finding all of the
discount codes that were used in the events table:

fun real-code(c :: String) -> Boolean:

136 CHAPTER 9. FROM TABLES TO LISTS

not(c == "none")

end

L.filter(real-code, codes)

This program might feel a bit verbose: do we really need to write a helper
function just to perform something as simple as a filter? Wouldn’t it be easier to
just write something like:

L.filter(not(c == "none"), codes)

Do Now!

What will Pyret produce if you run this expression?

Pyret will produce an unbound identifier error around the use of c in this
expression. What is c? We mean for c to be the elements from codes in turn. Con-
ceptually, that’s what filter does, but we don’t have the mechanics right. When
we call a function, we evaluate the arguments before the body of the function.
Hence, the error regarding c being unbound. The whole point of the real-code

helper function is to make c a parameter to a function whose body is only evaluated
once values for c is available.

To tighten the notation as in the one-line filter expression, then, we have to
find a way to tell Pyret to make a temporary function that will get its inputs once
filter is running. The following notation achieves this:

L.filter(lam(c): not(c == "none") end, codes)

We have added lam(c) and end around the expression that we want to use
in the filter. The lam(c) says "make a temporary function that takes c as an
input". The end serves to end the function definition, as when we use fun. lam is
short for lambda, a form of function definition that exists in many, though not all,
languages.

The main difference between our original expression (using the real-code

helper) and this new one (using lam) can be seen through the program directory.
To explain this, a little detail about how filter is defined under the hood. In part,
it looks like:

fun filter(keep :: (A -> Boolean), lst :: List<A>) -> List<A>:

if keep(<elt-from-list>):

...

else:

...

end

end

9.6. COMBINING LISTS AND TABLES 137

Whether we pass real-code or the lam version to filter, the keep param-
eter ends up referring to a function with the same parameter and body. Since the
function is only actually called through the keep name, it doesn’t matter whether
or not a name is associated with it when it is initially defined.

In practice, we use lam when we have to pass simple (single line) functions to
operations like filter (or map). We could have just as easily used them when we
were working with tables (build-column, filter-with, etc). Of course, you can
continue to write out names for helper functions as we did with real-code if that
makes more sense to you.

Exercise

Write the program to extract the list of usernames from a list of email ad-
dresses using lam rather than a named helper-function.

9.6 Combining Lists and Tables

The table functions we studied previously were primarily for processing rows. The
list functions we’ve learned in this chapter have been primarily for processing
columns (but there are many more uses in the chapters ahead). If an analysis in-
volves working with only some rows and some columns, we’ll use a combination
of both table and list functions in our program.

Exercise

Given the events table, produce a list of names of all people who will pick up
their tickets.

Exercise

Given the events table, produce the average number of tickets that were or-
dered by people with email addresses that end in ".org".

Sometimes, there will be more than one way to perform a computation:

Do Now!

Consider a question such as "how many people with ".org" email addresses
bought more than 8 tickets". Propose multiple task plans that would solve
this problem, including which table and list functions would accomplish each
task.

138 CHAPTER 9. FROM TABLES TO LISTS

There are several options here:

1. Get the event-data rows with no more than 8 tickets (using filter-with),
get those rows that have ".org" addresses (another filter-with), then ask
for how many rows are in the table (using <table>.length()).

2. Get the event-data rows with no more than 8 tickets and ".org" address
(using filter-with with a function that checks both conditions at once),
then ask for how many rows are in the table (using <table>.length()).

3. Get the event-data rows with no more than 8 tickets (using filter-with),
extract the email addresses (using get-column), limit those to ".org" (us-
ing L.filter), then get the length of the resulting list (using L.length).

There are others, but you get the idea.

Do Now!

Which approach do you like best? Why?

While there is no single correct answer, there are various considerations:

• Are any of the intermediate results useful for other computations? While
the second option might seem best because it filters the table once rather
than twice, perhaps the events company has many computations to perform
on larger ticket orders. Similarly, the company may want the list of email
addresses on large orders for other purposes (the third option)

• Do you want to follow a discipline of doing operations on individuals within
the table, extracting lists only when needed to perform aggregating compu-
tations that aren’t available on tables?

• Does one approach seem less resource-intensive than the other? This is ac-
tually a subtle point: you might be tempted to think that filtering over a table
uses more resources than filtering over a list of values from one column, but
this actually isn’t the case. We’ll return to this discussion later.

A company or project team sometimes sets design standards to help you make
those decisions. In the absence of that, and especially as you are learning to pro-
gram, consider multiple approaches when faced with such problems, then pick one
to implement. Maintaining the ability to think flexibly about approaches is a useful
skill in any form of design.

9.6. COMBINING LISTS AND TABLES 139

Until now we’ve only seen how to use built-in functions over lists. Next [chap-
ter 10], we will study how to create our own functions that process lists. Once we
learn that, these list processing functions will remain powerful but will no longer
seem quite so magical, because we’ll be able to build them for ourselves!

140 CHAPTER 9. FROM TABLES TO LISTS

Chapter 10

Processing Lists

We have already seen [chapter 9] several examples of list-processing functions.
They have been especially useful for advanced processing of tables. However,
lists arise frequently in programs, and they do so naturally because so many things
in our lives—from shopping lists to to-do lists to checklists—are naturally lists.
Thinking about the functions that we might want when processing lists, we can
observe that there are some interesting categories regarding the types of the data in
the list:

• some list functions are generic and operate on any kind of list: e.g., the
length of a list is the same irrespective of what kind of values it contains;

• some are specific at least to the type of data: e.g., the sum assumes that all the
values are numbers (though they may be ages or prices or other information
represented by numbers); and

• some are somewhere in-between: e.g., a maximum function applies to any
list of comparable values, such as numbers or strings.

This seems like a great variety, and we might worry about how we can han-
dle this many different kinds of functions. Fortunately, and perhaps surprisingly,
there is one standard way in which we can think about writing all these functions!
Understanding and internalizing this process is the goal of this chapter.

10.1 Making Lists and Taking Them Apart

So far we’ve seen one way to make a list: by writing [list: ...]. While useful,
writing lists this way actually hides their true nature. Every list actually has two

141

142 CHAPTER 10. PROCESSING LISTS

parts: a first element and the rest of the list. The rest of the list is itself a list, so it
too has two parts. . . and so on.

Consider the list [list: 1, 2, 3]. Its first element is 1, and the rest of
it is [list: 2, 3]. For this second list, the first element is 2 and the rest is
[list: 3].

Do Now!

Take apart this third list.

For the third list, the first element is 3 and the rest is [list:], i.e., the empty list.
In Pyret, we have another way of writing the empty list: empty.

Lists are an instance of structured data: data with component parts and a well-
defined format for the shape of the parts. Lists are formatted by the first element
and the rest of the elements. Tables are somewhat structured: they are formatted by
rows and columns, but the column names aren’t consistent across all tables. Struc-
tured data is valuable in programming because a predictable format (the structure)
lets us write programs based on that structure. What do we mean by that?

Programming languages can (and do!) provide built-in operators for taking
apart structured data. These operators are called accessors. Accessors are defined
on the structure of the datatype alone, independent of the contents of the data. In
the case of lists, there are two accessors: first and rest. We use an accessor by
writing an expression, followed by a dot (.), followed by the accessor’s name. As
we saw with tables, the dot means "dig into". Thus:

l1 = [list: 1, 2, 3]

e1 = l1.first

l2 = l1.rest

e2 = l2.first

l3 = l2.rest

e3 = l3.first

l4 = l3.rest

check:

e1 is 1

e2 is 2

e3 is 3

l2 is [list: 2, 3]

l3 is [list: 3]

l4 is empty

end

10.1. MAKING LISTS AND TAKING THEM APART 143

Do Now!

What are the accessors for tables?

Accessors give a way to take data apart based on their structure (there is an-
other way that we will see shortly). Is there a way to also build data based on
its structure? So far, we have been building lists using the [list: ...] form,
but that doesn’t emphasize the structural constraint that the rest is itself a list.
A structured operator for building lists would clearly show both a first element
and a rest that is itself a list. Operators for building structured data are called
constructors.

The constructor for lists is called link. It takes two arguments: a first ele-
ment, and the list to build on (the rest part). Here’s an example of using link to
create a three-element list.

link(1, link(2, link(3, empty)))

The link form creates the same underlying list datum as our previous [list: ...]

operation, as confirmed by the following check:

check:

[list: 1, 2, 3] is link(1, link(2, link(3, empty)))

end

Do Now!

Look at these two forms of writing lists: what differences do you notice?

Do Now!

Use the link form to write a four-element list of fruits containing "lychee",
"dates", "mango", and "durian".

After doing this exercise, you might wonder why anyone would use the link

form: it’s more verbose, and makes the individual elements harder to discern. This
form is not very convenient to humans. But it will prove very valuable to programs!

In particular, the link form highlights that we really have two different struc-
tures of lists. Some lists are empty. All other lists are non-empty lists, meaning
they have at least one link. There may be more interesting structure to some lists
(as we will see later), but all lists have this much in common. Specifically, a list is
either

• empty (written empty or [list:]), or

144 CHAPTER 10. PROCESSING LISTS

• non-empty (written link(..., ...) or [list:] with at least one value
inside the brackets), where the rest is also a list (and hence may in turn be
empty or non-empty, . . .).

This means we actually have two structural features of lists, both of which are
important when writing programs over lists:

1. Lists can be empty or non-empty

2. Non-empty lists have a first element and a rest of the list

Let’s leverage these two structural features to write some programs to process lists!

10.2 Some Example Exercises

To illustrate our thinking, let’s work through a few concrete examples of list-
processing functions. All of these will consume lists; some will even produce them.
Some will transform their inputs (like map), some will select from their inputs (like
filter), and some will aggregate their inputs. Since some of these functions al-
ready exist in Pyret, we’ll name them with the prefix my- to avoid errors. As weBe sure to use the my- name

consistently, including inside
the body of the function.

will see, there is a standard strategy that we can use to approach writing all of these
functions: having you learn this strategy is the goal of this chapter.

10.3 Structural Problems with Scalar Answers

Let’s write out examples for a few of the functions described above. We’ll ap-
proach writing examples in a very specific, stylized way. First of all, we should
always construct at least two examples: one with empty and the other with at least
one link, so that we’ve covered the two very broad kinds of lists. Then, we should
have more examples specific to the kind of list stated in the problem. Finally, we
should have even more examples to illustrate how we think about solving the prob-
lem.

my-len: Examples

We have’t precisely defined what it means to be “the length” of a list. We confront
this right away when trying to write an example. What is the length of the list
empty?

Do Now!

What do you think?

10.3. STRUCTURAL PROBLEMS WITH SCALAR ANSWERS 145

Two common examples are 0 and 1. The latter, 1, certainly looks reasonable.
However, if you write the list as [list:], now it doesn’t look so right: this is
clearly (as the name empty also suggests) an empty list, and an empty list has zero
elements in it. Therefore, it’s conventional to declare that

my-len(empty) is 0

How about a list like [list: 7]? Well, it’s clearly got one element (7) in it, so

my-len([list: 7]) is 1

Similarly, for a list like [list: 7, 8, 9], we would say

my-len([list: 7, 8, 9]) is 3

Now let’s look at that last example in a different light. Consider the argument
[list: 7, 8, 9]. Its first element is 7 and the rest of it is [list: 8, 9]. Well,
7 is a number, not a list; but [list: 8, 9] certainly is a list, so we can ask for its
length. What is my-len([list: 8, 9])? It has two elements, so

my-len([list: 8, 9]) is 2

The first element of that list is 8 while its rest is [list: 9]. What is its length?
Note that we asked a very similar question before, for the length of the list [list: 7].
But [list: 7] is not a sub-list of [list: 7, 8, 9], which we started with,
whereas [list: 9] is. And using the same reasoning as before, we can say

my-len([list: 9]) is 1

The rest of this last list is, of course, the empty list, whose length we have already
decided is 0.

Putting together these examples, and writing out empty in its other form, here’s
what we get:

my-len([list: 7, 8, 9]) is 3

my-len([list: 8, 9]) is 2

my-len([list: 9]) is 1

my-len([list:]) is 0

Another way we can write this (paying attention to the right side) is

my-len([list: 7, 8, 9]) is 1 + 2

my-len([list: 8, 9]) is 1 + 1

my-len([list: 9]) is 1 + 0

my-len([list:]) is 0

146 CHAPTER 10. PROCESSING LISTS

Where did the 2, 1, and 0 on the right sides of each + operation come from? Those
are the lengths of the rest component of the input list. In the previous example
block, we wrote those lengths as explicit examples. Let’s substitute the numbers 2,
1, and 0 with the my-len expressions that produce them:

my-len([list: 7, 8, 9]) is 1 + my-len([list: 8, 9])

my-len([list: 8, 9]) is 1 + my-len([list: 9])

my-len([list: 9]) is 1 + my-len([list:])

my-len([list:]) is 0

From this, maybe you can start to see a pattern. For an empty list, the length is
0. For a non-empty list, it’s the sum of 1 (the first element’s “contribution” to the
list’s length) to the length of the rest of the list. In other words, we can use the
result of computing my-len on the rest of the list to compute the answer for the
entire list.

Do Now!

Each of our examples in this section has written a different check on the
expression my-len([list: 7, 8, 9]). Here are those examples presented
together, along with one last one that explicitly uses the rest operation:

my-len([list: 7, 8, 9]) is 3

my-len([list: 7, 8, 9]) is 1 + 2

my-len([list: 7, 8, 9]) is 1 + my-len([list: 8, 9])

my-len([list: 7, 8, 9]) is 1 + my-len([list: 7, 8, 9].rest)

Check that you agree with each of these assertions. Also check whether you
understand how the right-hand side of each is expression derives from the
right-hand-side just above it. The goal of this exercise is to make sure that
you believe that the last check (which we will turn into code) is equivalent to
the first (which we wrote down when understanding the problem).

my-sum: Examples

Let’s repeat this process of developing examples on a second function, this time
one that computes the sum of the elements in a list of numbers. What is the sum of
the list [list: 7, 8, 9]? Just adding up the numbers by hand, the result should
be 24. Let’s see how that works out through the examples.

Setting aside the empty list for a moment, here are examples that show the sum
computations:

my-sum([list: 7, 8, 9]) is 7 + 8 + 9

my-sum([list: 8, 9]) is 8 + 9

10.3. STRUCTURAL PROBLEMS WITH SCALAR ANSWERS 147

my-sum([list: 9]) is 9

which (by substitution) is the same as

my-sum([list: 7, 8, 9]) is 7 + my-sum([list: 8, 9])

my-sum([list: 8, 9]) is 8 + my-sum([list: 9])

my-sum([list: 9]) is 9 + my-sum([list:])

From this, we can see that the sum of the empty list must be 0: Zero is called the additive
identity: a fancy way of saying,
adding zero to any number N
gives you N. Therefore, it
makes sense that it would be the
length of the empty list,
because the empty list has no
items to contribute to a sum.
Can you figure out what the
multiplicative identity is?

my-sum(empty) is 0

Observe, again, how we can use the result of computing my-sum of the rest of
the list to compute its result for the whole list.

From Examples to Code

Having developed these examples, we now want to use them to develop a program
that can compute the length or the sum of any list, not just the specific ones we
used in these examples. As we have done up in earlier chapters, we will leverage
patterns in the examples to figure out how to define the general-purpose function.

Here is one last version of the examples for my-len, this time making the rest
explicit on the right-hand sides of is:

my-len([list: 7, 8, 9]) is 1 + my-len([list: 7, 8, 9].rest)

my-len([list: 8, 9]) is 1 + my-len([list: 8, 9].rest)

my-len([list: 9]) is 1 + my-len([list: 9].rest)

my-len([list:]) is 0

As we did when developing functions over images, let’s try to identify the common
parts of these examples. We start by noticing that most of the examples have a lot
in common, except for the [list:] (empty) case. So let’s separate this into two
sets of examples:

my-len([list: 7, 8, 9]) is 1 + my-len([list: 7, 8, 9].rest)

my-len([list: 8, 9]) is 1 + my-len([list: 8, 9].rest)

my-len([list: 9]) is 1 + my-len([list: 9].rest)

my-len([list:]) is 0

With this separation (which follows one of the structural features of lists that
we mentioned earlier), a clearer pattern emerges: for a non-empty list (called
someList), we compute its length via the expression:

1 + my-len(someList.rest)

148 CHAPTER 10. PROCESSING LISTS

In general, then, our my-len program needs to determine whether its input list is
empty or non-empty, using this expression with .rest in the non-empty case. How
do we indicate different code based on the structure of the list?

Pyret has a construct called cases which is used to distinguish different forms
within a structured datatype. When working with lists, the general shape of a cases
expression is:

cases (List) e:

| empty => ...

| link(f, r) => ... f ... r ...

end

where most parts are fixed, but a few you’re free to change:

• e is an expression whose value needs to be a list; it could be a variable bound
to a list, or some complex expression that evaluates to a list.

• f and r are names given to the first and rest of the list. You can choose any
names you like, though in Pyret, it’s conventional to use f and r.Occasionally using different

names can help students recall
that they can choose how to
label the first and rest
components. This can be
particularly useful for first,
which has a problem-specific
meaning (such as price in a list
of prices, and so on).

The right-hand side of every => is an expression.
Here’s how cases works in this instance. Pyret first evaluates e. It then checks

that the resulting value truly is a list; otherwise it halts with an error. If it is a list,
Pyret examines what kind of list it is. If it’s an empty list, it runs the expression
after the => in the empty clause. Otherwise, the list is not empty, which means
it has a first and rest; Pyret binds f and r to the two parts, respectively, and then
evaluates the expression after the => in the link clause.

Exercise

Try using a non-list—e.g., a number—in the e position and see what happens!

Now let’s use cases to define my-len:

fun my-len(l):

cases (List) l:

| empty => 0

| link(f, r) => 1 + my-len(r)

end

end

This follows from our examples: when the list is empty my-len produces 0; when
it is not empty, we add one to the length of the rest of the list (here, r).

10.4. STRUCTURAL PROBLEMS THAT TRANSFORM LISTS 149

Note that while our most recent collection of my-len examples explicitly said
.rest, when using cases we instead use just the name r, which Pyret has already
defined (under the hood) to be l.rest.

Similarly, let’s define my-sum:

fun my-sum(l):

cases (List) l:

| empty => 0

| link(f, r) => f + my-sum(r)

end

end

Notice how similar they are in code, and how readily the structure of the data
suggest a structure for the program. This is a pattern you will get very used to
soon!

Strategy: Developing Functions Over Lists

Leverage the structure of lists and the power of concrete examples to develop
list-processing functions.

• Pick a concrete list with (at least) three elements. Write a sequence of
examples for each of the entire list and each suffix of the list (including
the empty list).

• Rewrite each example to express its expected answer in terms of the
first and rest data of its input list. You don’t have to use the first
and rest operators in the new answers, but you should see the first

and rest values represented explicitly in the answer.

• Look for a pattern across the answers in the examples. Use these to
develop the code: write a cases expression, filling in the right side of
each => based on your examples.

This strategy applies to structured data in general, leveraging components of
each datum rather than specifically first and rest as presented so far.

10.4 Structural Problems that Transform Lists

Now that we have a systematic way to develop functions that take lists as input,
let’s apply that same strategy to functions that produce a list as the answer.

150 CHAPTER 10. PROCESSING LISTS

my-doubles: Examples and Code

As always, we’ll begin with some examples. Given a list of numbers, we want a
list that doubles each number (in the order of the original list). Here’s a reasonable
example with three numbers:

my-doubles([list: 3, 5, 2]) is [list: 6, 10, 4]

As before, let’s write out the answers for each suffix of our example list as
well, including for the empty list:

my-doubles([list: 5, 2]) is [list: 10, 4]

my-doubles([list: 2]) is [list: 4]

my-doubles([list:]) is [list:]

Now, we rewrite the answer expressions to include the concrete first and
rest data for each example. Let’s start with just the first data, and just on the
first example:

my-doubles([list: 3, 5, 2]) is [list: 3 * 2, 10, 4]

my-doubles([list: 5, 2]) is [list: 10, 4]

my-doubles([list: 2]) is [list: 4]

my-doubles([list:]) is [list:]

Next, let’s include the rest data ([list: 5, 2]) in the first example. The
current answer in the first example is

[list: 3 * 2, 10, 4]

and that [list: 10, 4] is the result of using the function on [list: 5, 2].
We might therefore be tempted to replace the right side of the first example with:

[list: 3 * 2, my-doubles([list: 5, 2])]

Do Now!

What value would this expression produce? You might want to try this ex-
ample that doesn’t use my-doubles directly:

[list: 3 * 2, [list: 10, 4]]

Oops! We want a single (flat) list, not a list-within-a-list. This feels like it is on
the right track in terms of reworking the answer to use the first and rest values,
but we’re clearly not quite there yet.

10.4. STRUCTURAL PROBLEMS THAT TRANSFORM LISTS 151

Do Now!

What value does the following expression produce?

link(3 * 2, [list: 10, 4])

Notice the difference between the two expressions in these last two exercises:
the latter used link to put the value involving first into the conversion of the
rest, while the former tried to do this with list:.

Do Now!

How many elements are in the lists that result from each of the following
expressions?

[list: 25, 16, 32]

[list: 25, [list: 16, 32]]

link(25, [list: 16, 32])

Do Now!

Summarize the difference between how link and list: combine an element
and a list. Try additional examples at the interactions prompt if needed to
explore these ideas.

The takeaway here is that we use link to insert an element into an existing list,
whereas we use list: to make a new list that contains the old list as an element.
Going back to our examples, then, we include rest in the first example by writing
it as follows:

my-doubles([list: 3, 5, 2]) is link(3 * 2, [list: 10, 4])

my-doubles([list: 5, 2]) is [list: 10, 4]

my-doubles([list: 2]) is [list: 4]

my-doubles([list:]) is [list:]

which we then convert to

my-doubles([list: 3, 5, 2]) is link(3 * 2, my-doubles([list: 5, 2])

my-doubles([list: 5, 2]) is [list: 10, 4]

my-doubles([list: 2]) is [list: 4]

my-doubles([list:]) is [list:]

Applying this idea across the examples, we get:

152 CHAPTER 10. PROCESSING LISTS

my-doubles([list: 3, 5, 2]) is link(3 * 2, my-doubles([list: 5, 2])

my-doubles([list: 5, 2]) is link(5 * 2, my-doubles([list: 2])

my-doubles([list: 2]) is link(2 * 2, my-doubles([list:])

my-doubles([list:]) is [list:]

Now that we have examples that explicitly use the first and rest elements,
we can produce to write the my-doubles function:

fun my-doubles(l):

cases (List) l:

| empty => empty

| link(f, r) =>

link(f * 2, my-doubles(r))

end

end

my-str-len: Examples and Code

In my-doubles, the input and output lists have the same type of element. Functions
can also produce lists whose contents have a different type from the input list. Let’s
work through an example. Given a list of strings, we want the lengths of each string
(in the same order as in the input list). Thus, here’s a reasonable example:

my-str-len([list: "hi", "there", "mateys"]) is [list: 2, 5, 6]

As we have before, we should consider the answers for each sub-problem of the
above example:

my-str-len([list: "there", "mateys"]) is [list: 5, 6]

my-str-len([list: "mateys"]) is [list: 6]

Or, in other words:

my-str-len([list: "hi", "there", "mateys"]) is link(2, [list: 5, 6])

my-str-len([list: "there", "mateys"]) is link(5, [list:

6])

my-str-len([list: "mateys"]) is link(6, [list:

])

which tells us that the response for the empty list should be empty:

my-str-len(empty) is empty

The next step is to rework the answers in the examples to make the first and
rest parts explicit. Hopefully by now you are starting to detect a pattern: The

10.5. STRUCTURAL PROBLEMS THAT SELECT FROM LISTS 153

result on the rest of the list appears explicitly as another example. Therefore, we’ll
start by getting the rest value of each example input into the answer:

my-str-len([list: "hi", "there", "mateys"]) is link(2, my-str-len([list: "there", "mateys"]))

my-str-len([list: "there", "mateys"]) is link(5, my-str-len([list:

"mateys"]))

my-str-len([list: "mateys"]) is link(6, my-str-len([list:

]))

my-str-len(list:]) is [list:]

All that remains now is to figure out how to work the first values into the
outputs. In the context of this problem, this means we need to convert "hi" into
2, "there" into 5, and so on. From the problem statement, we know that 2 and
5 are meant to be the lengths (character counts) of the corresponding strings. The
operation that determines the length of a string is called string-length. Thus,
our examples appear as:

my-str-len([list: "hi", "there", "mateys"]) is link(string-length("hi"), my-str-len([list: "there", "mateys"]))

my-str-len([list: "there", "mateys"]) is link(string-length("there"), my-str-len([list:

"mateys"]))

my-str-len([list: "mateys"]) is link(string-length("mateys"), my-str-len([list:]))

my-str-len(list:]) is [list:]

From here, we write a function that captures the pattern developed across our
examples:

fun my-str-len(l):

cases (List) l:

| empty => empty

| link(f, r) =>

link(string-length(f), my-str-len(r))

end

end

10.5 Structural Problems that Select from Lists

In the previous section, we saw functions that transform list elements (by doubling
numbers or counting characters). The type of the output list may or may not be the
same as the type of the input list. Other functions that produce lists instead select
elements: every element in the output list was in the input list, but some input-list
elements might not appear in the output list. This section adapts our method of
deriving functions from examples to accommodate selection of elements.

154 CHAPTER 10. PROCESSING LISTS

my-pos-nums: Examples and Code

As our first example, we will select the positive numbers from a list that contains
both positive and non-positive numbers.

Do Now!

Construct the sequence of examples that we obtain from the input [list: 1, -2, 3, -4].

Here we go:

my-pos-nums([list: 1, -2, 3, -4]) is [list: 1, 3]

my-pos-nums([list: -2, 3, -4]) is [list: 3]

my-pos-nums([list: 3, -4]) is [list: 3]

my-pos-nums([list: -4]) is [list:]

my-pos-nums([list:]) is [list:]

We can write this in the following form:

my-pos-nums([list: 1, -2, 3, -4]) is link(1, [list: 3])

my-pos-nums([list: -2, 3, -4]) is [list: 3]

my-pos-nums([list: 3, -4]) is link(3, [list:])

my-pos-nums([list: -4]) is [list:]

my-pos-nums([list:]) is [list:]

or, even more explicitly,

my-pos-nums([list: 1, -2, 3, -4]) is link(1, my-pos-nums([list: -2, 3, -4]))

my-pos-nums([list: -2, 3, -4]) is my-pos-nums([list:

3, -4])

my-pos-nums([list: 3, -4]) is link(3, my-pos-nums([list:

-4]))

my-pos-nums([list: -4]) is my-pos-nums([list:

])

my-pos-nums([list:]) is [list:]

Unlike in the example sequences for functions that transform lists, here we see
that the answers have different shapes: some involve a link, while others simply
process the rest of the list. Whenever we need different shapes of outputs across
a set of examples, we will need an if expression in our code to distinguish the
conditions that yield each shape.

What determines which shape of output we get? Let’s rearrange the examples
(other than the empty-list input) by output shape:

10.5. STRUCTURAL PROBLEMS THAT SELECT FROM LISTS 155

my-pos-nums([list: 1, -2, 3, -4]) is link(1, my-pos-nums([list: -2, 3, -4]))

my-pos-nums([list: 3, -4]) is link(3, my-pos-nums([list:

-4]))

my-pos-nums([list: -2, 3, -4]) is my-pos-nums([list:

3, -4])

my-pos-nums([list: -4]) is my-pos-nums([list:

])

Re-organized, we can see that the examples that use link have a positive number
in the first position, while the ones that don’t simply process the rest of the list.
That indicates that our if expression needs to ask whether the first element in
the list is positive. This yields the following program:

fun my-pos-nums(l):

cases (List) l:

| empty => empty

| link(f, r) =>

if f > 0:

link(f, my-pos-nums(r))

else:

my-pos-nums(r)

end

end

end

Do Now!

Is our set of examples comprehensive?

Not really. There are many examples we haven’t considered, such as lists that
end with positive numbers and lists with 0.

Exercise

Work through these examples and see how they affect the program!

my-alternating: Examples and Code

Now let’s consider a problem that selects elements not by value, but by position.
We want to write a function that selects alternating elements from a list. Once
again, we’re going to work from examples.

156 CHAPTER 10. PROCESSING LISTS

Do Now!

Work out the results for my-alternating starting from the list [list: 1, 2, 3, 4, 5, 6].

Here’s how they work out:
<alternating-egs-1> ::=

check:

my-alternating([list: 1, 2, 3, 4, 5, 6]) is [list: 1, 3, 5]

my-alternating([list: 2, 3, 4, 5, 6]) is [list: 2, 4, 6]

my-alternating([list: 3, 4, 5, 6]) is [list: 3, 5]

my-alternating([list: 4, 5, 6]) is [list: 4, 6]

end

Wait, what’s that? The two answers above are each correct, but the second answer
does not help us in any way construct the first answer. That means the way we’ve
solved these problems until now is not enough for this new kind of problem. It’s
still useful, though: notice that there’s a connection between the first example and
the third, as well as between the second example and the fourth. This observation
is consistent with our goal of selecting alternating elements.

What would something like this look like in code? Before we try to write the
function, let’s rewrite the first example in terms of the third:

my-alternating([list: 1, 2, 3, 4, 5, 6]) is [list: 1, 3, 5]

my-alternating([list: 3, 4, 5, 6]) is [list: 3, 5]

my-alternating([list: 1, 2, 3, 4, 5, 6]) is link(1, my-alternating([list: 3, 4, 5, 6]))

Note that in the rewritten version, we are dropping two elements from the list
before using my-alternating again, not just one. We will have to figure out how
to handle that in our code.

Let’s start with our usual function pattern with a cases expression:

fun my-alternating(l):

cases (List) l:

| empty => [list:]

| link(f, r) => link(f, ... r ...)

end

end

Note that we cannot simply call my-alternating on r, because r excludes
only one item from the list, not two as this problem requires. We have to break
down r as well, in order to get to the rest of the rest of the original list. To do
this, we use another cases expression, nested within the first cases expression:

10.5. STRUCTURAL PROBLEMS THAT SELECT FROM LISTS 157

fun my-alternating(l):

cases (List) l:

| empty => [list:]

| link(f, r) =>

cases (List) r: # note: deconstructing r, not l

| empty => ??? # note the ???

| link(fr, rr) =>

fr = first of rest, rr = rest of rest

link(f, my-alternating(rr))

end

end

end

This code is consistent with the example that we just worked out. But note that we
still have a bit of unfinished work to do: we need to decide what to do in the empty
case of the inner cases expression (marked by ??? in the code).

A common temptation at this point is to replace the ??? with [list:]. After
all, haven’t we always returned [list:] in the empty cases?

Do Now!

Replace ??? with [list:] and test the program on our original examples:

my-alternating([list: 1, 2, 3, 4, 5, 6]) is [list: 1, 3, 5]

my-alternating([list: 2, 3, 4, 5, 6]) is [list: 2, 4, 6]

my-alternating([list: 3, 4, 5, 6]) is [list: 3, 5]

my-alternating([list: 4, 5, 6]) is [list: 4, 6]

What do you observe?

Oops! We’ve written a program that appears to work on lists with an even
number of elements, but not on lists with an odd number of elements. How did that
happen? The only part of this code that we guessed at was how to fill in the empty
case of the inner cases, so the issue must be there. Rather than focus on the code,
however, focus on the examples. We need a simple example that would land on that
part of the code. We get to that spot when the list l is not empty, but r (the rest of
l) is empty. In other words, we need an example with only one element.

Do Now!

Finish the following example:

my-alternating([list: 5]) is ???

158 CHAPTER 10. PROCESSING LISTS

Given a list with one element, that element should be included in a list of alternating
elements. Thus, we should finish this example as

my-alternating([list: 5]) is [list: 5]

Do Now!

Use this example to update the result of my-alternating when r is empty
in our code.

Leveraging this new example, the final version of my-alternating is as fol-
lows:

fun my-alternating(l):

cases (List) l:

| empty => empty

| link(f, r) =>

cases (List) r: # note: deconstructing r, not l

| empty => # the list has an odd number of elements

[list: f]

| link(fr, rr) =>

fr = first of rest, rr = rest of rest

link(f, my-alternating(rr))

end

end

end

What’s the takeaway from this problem? There are two:

• Don’t skip the small examples: the result of a list-processing function on the
empty case won’t always be empty.

• If a problem asks you to work with multiple elements from the front of a list,
you can nest cases expressions to access later elements.

These takeaways will matter again in future examples: keep an eye out for them!

10.6 Structural Problems Over Relaxed Domains

my-max: Examples

Now let’s find the maximum value of a list. Let’s assume for simplicity that
we’re dealing with just lists of numbers. What kinds of lists should we construct?

10.6. STRUCTURAL PROBLEMS OVER RELAXED DOMAINS 159

Clearly, we should have empty and non-empty lists. . . but what else? Is a list like
[list: 1, 2, 3] a good example? Well, there’s nothing wrong with it, but we
should also consider lists where the maximum at the beginning rather than at the
end; the maximum might be in the middle; the maximum might be repeated; the
maximum might be negative; and so on. While not comprehensive, here is a small
but interesting set of examples:

my-max([list: 1, 2, 3]) is 3

my-max([list: 3, 2, 1]) is 3

my-max([list: 2, 3, 1]) is 3

my-max([list: 2, 3, 1, 3, 2]) is 3

my-max([list: 2, 1, 4, 3, 2]) is 4

my-max([list: -2, -1, -3]) is -1

What about my-max(empty)?

Do Now!

Could we define my-max(empty) to be 0? Returning 0 for the empty list has
worked well twice already!

We’ll return to this in a while.
Before we proceed, it’s useful to know that there’s a function called num-max

already defined in Pyret, that compares two numbers:

num-max(1, 2) is 2

num-max(-1, -2) is -1

Exercise

Suppose num-max were not already built in. Can you define it? You will find
what you learned about section 6.3 handy. Remember to write some tests!

Now we can look at my-max at work:

my-max([list: 1, 2, 3]) is 3

my-max([list: 2, 3]) is 3

my-max([list: 3]) is 3

Hmm. That didn’t really teach us anything, did it? Maybe, we can’t be sure. And
we still don’t know what to do with empty.

Let’s try the second example input:

160 CHAPTER 10. PROCESSING LISTS

my-max([list: 3, 2, 1]) is 3

my-max([list: 2, 1]) is 2

my-max([list: 1]) is 1

This is actually telling us something useful as well, but maybe we can’t see it yet.
Let’s take on something more ambitious:

my-max([list: 2, 1, 4, 3, 2]) is 4

my-max([list: 1, 4, 3, 2]) is 4

my-max([list: 4, 3, 2]) is 4

my-max([list: 3, 2]) is 3

my-max([list: 2]) is 2

Observe how the maximum of the rest of the list gives us a candidate answer, but
comparing it to the first element gives us a definitive one:

my-max([list: 2, 1, 4, 3, 2]) is num-max(2, 4)

my-max([list: 1, 4, 3, 2]) is num-max(1, 4)

my-max([list: 4, 3, 2]) is num-max(4, 3)

my-max([list: 3, 2]) is num-max(3, 2)

my-max([list: 2]) is ...

The last one is a little awkward: we’d like to write

my-max([list: 2]) is num-max(2, ...)

but we don’t really know what the maximum (or minimum, or any other element)
of the empty list is, but we can only provide numbers to num-max. Therefore,
leaving out that dodgy case, we’re left with

my-max([list: 2, 1, 4, 3, 2]) is num-max(2, my-max([list: 1, 4, 3, 2]))

my-max([list: 1, 4, 3, 2]) is num-max(1, my-max([list: 4, 3, 2]))

my-max([list: 4, 3, 2]) is num-max(4, my-max([list: 3, 2]))

my-max([list: 3, 2]) is num-max(3, my-max([list:

2]))

Our examples have again helped: they’ve revealed how we can use the answer for
each rest of the list to compute the answer for the whole list, which in turn is the
rest of some other list, and so on. If you go back and look at the other example lists
we wrote above, you’ll see the pattern holds there too.

However, it’s time we now confront the empty case. The real problem is that
we don’t have a maximum for the empty list: for any number we might provide,
there is always a number bigger than it (assuming our computer is large enough)
that could have been the answer instead. In short, it’s nonsensical to ask for the
maximum (or minimum) of the empty list: the concept of “maximum” is only

10.6. STRUCTURAL PROBLEMS OVER RELAXED DOMAINS 161

defined on non-empty lists! That is, when asked for the maximum of an empty list,
we should signal an error:

my-max(empty) raises ""

(which is how, in Pyret, we say that it will generate an error; we don’t care about
the details of the error, hence the empty string).

my-max: From Examples to Code

Once again, we can codify the examples above, i.e., turn them into a uniform pro-
gram that works for all instances. However, we now have a twist. If we blindly
followed the pattern we’ve used earlier, we would end up with:

fun my-max(l):

cases (List) l:

| empty => raise("not defined for empty lists")

| link(f, r) => num-max(f, my-max(r))

end

end

Do Now!

What’s wrong with this?

Consider the list [list: 2]. This turns into

num-max(2, my-max([list:]))

which of course raises an error. Therefore, this function never works for any list
that has one or more elements!

That’s because we need to make sure we aren’t trying to compute the maximum
of the empty list. Going back to our examples, we see that what we need to do,
before calling my-max, is check whether the rest of the list is empty. If it is, we do
not want to call my-max at all. That is:

fun my-max(l):

cases (List) l:

| empty => raise("not defined for empty lists")

| link(f, r) =>

cases (List) r:

| empty => ...

| ...

end

162 CHAPTER 10. PROCESSING LISTS

end

end

We’ll return to what to do when the rest is not empty in a moment.
If the rest of the list l is empty, our examples above tell us that the maximum

is the first element in the list. Therefore, we can fill this in:

fun my-max(l):

cases (List) l:

| empty => raise("not defined for empty lists")

| link(f, r) =>

cases (List) r:

| empty => f

| ...

end

end

end

Note in particular the absence of a call to my-max. If the list is not empty, however,
our examples above tell us that my-max will give us the maximum of the rest of the
list, and we just need to compare this answer with the first element (f):

fun my-max(l):

cases (List) l:

| empty => raise("not defined for empty lists")

| link(f, r) =>

cases (List) r:

| empty => f

| else => num-max(f, my-max(r))

end

end

end

And sure enough, this definition does the job!

10.7 More Structural Problems with Scalar Answers

my-avg: Examples

Let’s now try to compute the average of a list of numbers. Let’s start with the
example list [list: 1, 2, 3, 4] and work out more examples from it. The
average of numbers in this list is clearly (1 + 2 + 3 + 4)/4, or 10/4.

10.7. MORE STRUCTURAL PROBLEMS WITH SCALAR ANSWERS 163

Based on the list’s structure, we see that the rest of the list is [list: 2, 3, 4],
and the rest of that is [list: 3, 4], and so on. The resulting averages are:

my-avg([list: 1, 2, 3, 4]) is 10/4

my-avg([list: 2, 3, 4]) is 9/3

my-avg([list: 3, 4]) is 7/2

my-avg([list: 4]) is 4/1

The problem is, it’s simply not clear how we get from the answer for the sub-list to
the answer for the whole list. That is, given the following two bits of information:

• The average of the remainder of the list is 9/3, i.e., 3.

• The first number in the list is 1.

How do we determine that the average of the whole list must be 10/4? If it’s not
clear to you, don’t worry: with just those two pieces of information, it’s impossible!

Here’s a simpler example that explains why. Let’s suppose the first value in a
list is 1, and the average of the rest of the list is 2. Here are two very different lists
that fit this description:

[list: 1, 2] # the rest has one element with sum 2

[list: 1, 4, 0] # the rest has two elements with sum 4

The average of the entire first list is 3/2, while the average of the entire second list
is 5/3, and the two are not the same.

That is, to compute the average of a whole list, it’s not even useful to know the
average of the rest of the list. Rather, we need to know the sum and the length of
the rest of the list. With these two, we can add the first to the sum, and 1 to the
length, and compute the new average.

In principle, we could try to make a average function that returns all this
information. Instead, it will be a lot simpler to simply decompose the task into two
smaller tasks. After all, we have already seen how to compute the length and how
to compute the sum. The average, therefore, can just use these existing functions:

fun my-avg(l):

my-sum(l) / my-len(l)

end

Do Now!

What should be the average of the empty list? Does the above code produce
what you would expect?

164 CHAPTER 10. PROCESSING LISTS

Just as we argued earlier about the maximum [section 10.6], the average of
the empty list isn’t a well-defined concept. Therefore, it would be appropriate to
signal an error. The implementation above does this, but poorly: it reports an error
on division. A better programming practice would be to catch this situation and
report the error right away, rather than hoping some other function will report the
error.

Exercise

Alter my-avg above to signal an error when given the empty list.

Therefore, we see that the process we’ve used—of inferring code from examples—
won’t always suffice, and we’ll need more sophisticated techniques to solve some
problems. However, notice that working from examples helps us quickly identify
situations where this approach does and doesn’t work. Furthermore, if you look
more closely you’ll notice that the examples above do hint at how to solve the
problem: in our very first examples, we wrote answers like 10/4, 9/3, and 7/2,
which correspond to the sum of the numbers divided by the length. Thus, writing
the answers in this form (as opposed, for instance, to writing the second of those
as 3) already reveals a structure for a solution.

10.8 Structural Problems with Accumulators

my-running-sum: First Attempt

One more time, we’ll begin with an example.

Do Now!

Work out the results for my-running-sum starting from the list [list: 1, 2, 3, 4, 5].

Here’s what our first few examples look like:
<running-sum-egs-1> ::=

check:

my-running-sum([list: 1, 2, 3, 4, 5]) is [list: 1, 3, 6, 10, 15]

my-running-sum([list: 2, 3, 4, 5]) is [list: 2, 5, 9, 14]

my-running-sum([list: 3, 4, 5]) is [list: 3, 7, 12]

end

Again, there doesn’t appear to be any clear connection between the result on the
rest of the list and the result on the entire list.

(That isn’t strictly true: we can still line up the answers as follows:

10.8. STRUCTURAL PROBLEMS WITH ACCUMULATORS 165

my-running-sum([list: 1, 2, 3, 4, 5]) is [list: 1, 3, 6, 10, 15]

my-running-sum([list: 2, 3, 4, 5]) is [list: 2, 5, 9, 14]

my-running-sum([list: 3, 4, 5]) is [list: 3, 7, 12]

and observe that we’re computing the answer for the rest of the list, then adding
the first element to each element in the answer, and linking the first element to the
front. In principle, we can compute this solution directly, but for now that may be
more work than finding a simpler way to answer it.)

my-running-sum: Examples and Code

Recall how we began in section 10.8.1. Our examples [<running-sum-egs-1>]
showed the following problem. When we process the rest of the list, we have
forgotten everything about what preceded it. That is, when processing the list
starting at 2 we forget that we’ve seen a 1 earlier; when starting from 3, we forget
that we’ve seen both 1 and 2 earlier; and so on. In other words, we keep forgetting
the past. We need some way of avoiding that.

The easiest thing we can do is simply change our function to carry along this
“memory”, or what we’ll call an accumulator. That is, imagine we were defining a
new function, called my-rs. It will consume a list of numbers and produce a list of
numbers, but in addition it will also take the sum of numbers preceding the current
list.

Do Now!

What should the initial sum be?

Initially there is no “preceding list”, so we will use the additive identity: 0. The
type of my-rs is

my-rs :: Number, List<Number> -> List<Number>

Let’s now re-work our examples from <running-sum-egs-1> as examples of
my-rs instead. The examples use the + operator to append two lists into one (the
elements of the first list followed by the elements of the second):

my-rs(0, [list: 1, 2, 3, 4, 5]) is [list: 0 + 1] + my-rs(0 + 1, [list: 2, 3, 4, 5])

my-rs(1, [list: 2, 3, 4, 5]) is [list: 1 + 2] + my-rs(1 + 2, [list:

3, 4, 5])

my-rs(3, [list: 3, 4, 5]) is [list: 3 + 3] + my-rs(3 + 3, [list:

4, 5])

my-rs(6, [list: 4, 5]) is [list: 6 + 4] + my-rs(6 + 4, [list:

5])

166 CHAPTER 10. PROCESSING LISTS

my-rs(10, [list: 5]) is [list: 10 + 5] + my-rs(10 + 5, [list:

])

my-rs(15, [list:]) is empty

That is, my-rs translates into the following code:

fun my-rs(acc, l):

cases (List) l:

| empty => empty

| link(f, r) =>

new-sum = acc + f

link(new-sum, my-rs(new-sum, r))

end

end

All that’s then left is to call it from my-running-sum:

fun my-running-sum(l):

my-rs(0, l)

end

Observe that we do not change my-running-sum itself to take extra arguments.
The correctness of our code depends on the initial value of acc being 0. If we
added a parameter for acc, any code that calls my-running-sum could supply an
unexpected value, which would distort the result. In addition, since the value is
fixed, adding the parameter would amount to shifting additional (and needless)
work onto others who use our code.

my-alternating: Examples and Code

Recall our examples in section 10.5.2. There, we noticed that the code built on
every-other example. We might have chosen our examples differently, so that from
one example to the next we skipped two elements rather than one. Here we will
see another way to think about the same problem.

Return to the examples we’ve already seen [<alternating-egs-1>]. We wrote
my-alternating to traverse the list essentially two elements at a time. Another
option is to traverse it just one element at a time, but keeping track of whether we’re
at an odd or even element—i.e., add “memory” to our program. Since we just need
to track that one piece of information, we can use a Boolean to do it. Let’s define
a new function for this purpose:

my-alt :: List<Any>, Boolean -> List<Any>

10.9. DEALING WITH MULTIPLE ANSWERS 167

The extra argument accumulates whether we’re at an element to keep or one to
discard.

We can reuse the existing template for list functions. When we have an element,
we have to consult the accumulator whether to keep it or not. If its value is true
we link it to the answer; otherwise we ignore it. As we process the rest of the list,
however, we have to remember to update the accumulator: if we kept an element
we don’t wish to keep the next one, and vice versa.

fun my-alt(l, keep):

cases (List) l:

| empty => empty

| link(f, r) =>

if keep:

link(f, my-alt(r, false))

else:

my-alt(r, true)

end

end

end

Finally, we have to determine the initial value of the accumulator. In this case,
since we want to keep alternating elements starting with the first one, its initial
value should be true:

fun my-alternating(l):

my-alt(l, true)

end

Exercise

Define my-max using an accumulator. What does the accumulator represent?
Do you encounter any difficulty?

10.9 Dealing with Multiple Answers

Our discussion above has assumed there is only one answer for a given input. This
is often true, but it also depends on how the problem is worded and how we choose
to generate examples. We will study this in some detail now.

uniq: Problem Setup

Consider the task of writing uniq: given a list of values, it produces a collection of uniq is the name of a Unix
utility with similar behavior;
hence the spelling of the name.

168 CHAPTER 10. PROCESSING LISTS

the same elements while avoiding any duplicates (hence uniq, short for “unique”).
Consider the following input: [list: 1, 2, 1, 3, 1, 2, 4, 1].

Do Now!

What is the sequence of examples this input generates? It’s really important
you stop and try to do this by hand. As we will see there are multiple solu-
tions, and it’s useful for you to consider what you generate. Even if you can’t
generate a sequence, trying to do so will better prepare you for what you read
next.

How did you obtain your example? If you just “thought about it for a moment
and wrote something down”, you may or may not have gotten something you can
turn into a program. Programs can only proceed systematically; they can’t “think”.
So, hopefully you took a well-defined path to computing the answer.

uniq: Examples

It turns out there are several possible answers, because we have (intentionally)
left the problem unspecified. Suppose there are two instances of a value in the
list; which one do we keep, the first or the second? On the one hand, since the
two instances must be equivalent it doesn’t matter, but it does for writing concrete
examples and deriving a solution.

For instance, you might have generated this sequence:

examples:

uniq([list: 1, 2, 1, 3, 1, 2, 4, 1]) is [list: 3, 2, 4, 1]

uniq([list: 2, 1, 3, 1, 2, 4, 1]) is [list: 3, 2, 4, 1]

uniq([list: 1, 3, 1, 2, 4, 1]) is [list: 3, 2, 4, 1]

uniq([list: 3, 1, 2, 4, 1]) is [list: 3, 2, 4, 1]

uniq([list: 1, 2, 4, 1]) is [list: 2, 4, 1]

uniq([list: 2, 4, 1]) is [list: 2, 4, 1]

uniq([list: 4, 1]) is [list: 4, 1]

uniq([list: 1]) is [list: 1]

uniq([list:]) is [list:]

end

However, you might have also generated sequences that began with

uniq([list: 1, 2, 1, 3, 1, 2, 4, 1]) is [list: 1, 2, 3, 4]

or

uniq([list: 1, 2, 1, 3, 1, 2, 4, 1]) is [list: 4, 3, 2, 1]

and so on. Let’s work with the examples we’ve worked out above.

10.9. DEALING WITH MULTIPLE ANSWERS 169

uniq: Code

What is the systematic approach that gets us to this answer? When given a non-
empty list, we split it into its first element and the rest of the list. Suppose we
have the answer to uniq applied to the rest of the list. Now we can ask: is the first
element in the rest of the list? If it is, then we can ignore it, since it is certain to
be in the uniq of the rest of the list. If, however, it is not in the rest of the list, it’s
critical that we link it to the answer.

This translates into the following program. For the empty list, we return the
empty list. If the list is non-empty, we check whether the first is in the rest of the
list. If it is not, we include it; otherwise we can ignore it for now.

This results in the following program:

fun uniq-rec(l :: List<Any>) -> List<Any>:

cases (List) l:

| empty => empty

| link(f, r) =>

if r.member(f):

uniq-rec(r)

else:

link(f, uniq-rec(r))

end

end

end

which we’ve called uniq-rec instead of uniq to differentiate it from other versions
of uniq.

Exercise

Note that we’re using .member to check whether an element is a member of
the list. Write a function member that consumes an element and a list, and
tells us whether the element is a member of the list.

170 CHAPTER 10. PROCESSING LISTS

Exercise

Uniqueness checking has many practical applications. For example, one
might have a list of names of people who have registered to vote in an elec-
tion. To keep the voting fair, with only one vote allowed per person, we
should remove duplicate names from the list.

1. Propose a set of examples for a function rem-duplicate-voters that
takes a list of voter names and returns a list in which duplicate reg-
istrations have been removed. In developing your examples, consider
real-world scenarios that you can imagine arising when identifying du-
plicate names. Can you identify cases in which two names might ap-
pear to be the same person, but not be? Cases in which two names
might appear different but be referring to the same person?

2. What might you need to change about our current uniq-rec function
to handle a situation like removing duplicate voters?

Responsible Computing: Context Matters When Comparing Values

The data de-duplication context in the above exercise reminds us that dif-
ferent contexts may call for different notions of when two data values are
the same. Sometimes, we want exact matching to determine that two strings
are equal. Sometimes, we need methods that normalize data, either in simple
ways like capitalization or subtler ways based on middle initials. Sometimes,
we need more information (like street addresses in addition to names) in or-
der to determine whether two items in a list should be considered “the same”.

It is easy to write programs that encode assumptions about our data that
might not apply in practice. This is again a situation that can be helped by
thinking about the concrete examples on which your code needs to work in
context.

uniq: Reducing Computation

Notice that this function has a repeated expression. Instead of writing it twice, we
could call it just once and use the result in both places:

fun uniq-rec2(l :: List<Any>) -> List<Any>:

cases (List) l:

| empty => empty

| link(f, r) =>

10.9. DEALING WITH MULTIPLE ANSWERS 171

ur = uniq-rec2(r)

if r.member(f):

ur

else:

link(f, ur)

end

end

end

While it may seem that we have merely avoided repeating an expression, by mov-
ing the computation uniq-rec(r) to before the conditional, we have actually
changed the program’s behavior in a subtle way (by creating what are known as
tail calls, which you can learn about in a programming-languages course).

You might think, because we replaced two function calls with one, that we’ve
reduced the amount of computation the program does. It does not! The two func-
tion calls are both in the two branches of the same conditional; therefore, for any
given list element, only one or the other call to uniq happens. In fact, in both cases,
there was one call to uniq before, and there is one now. So we have reduced the
number of calls in the source program, but not the number that take place when the
program runs. In that sense, the name of this section was intentionally misleading!

However, there is one useful reduction we can perform, which is enabled by
the structure of uniq-rec2. We currently check whether f is a member of r, which
is the list of all the remaining elements. In our example, this means that in the very
second turn, we check whether 2 is a member of the list [list: 1, 3, 1, 2, 4, 1].
This is a list of six elements, including three copies of 1. We compare 2 against two
copies of 1. However, we gain nothing from the second comparison. Put differ-
ently, we can think of uniq(r) as a “summary” of the rest of the list that is exactly
as good as r itself for checking membership, with the advantage that it might be
significantly shorter. This, of course, is exactly what ur represents. Therefore, we
can encode this intuition as follows:

fun uniq-rec3(l :: List<Any>) -> List<Any>:

cases (List) l:

| empty => empty

| link(f, r) =>

ur = uniq-rec3(r)

if ur.member(f):

ur

else:

link(f, ur)

end

172 CHAPTER 10. PROCESSING LISTS

end

end

Note that all that changed is that we check for membership in ur rather than in r.

Exercise

Later [chapter 18] we will study how to formally study how long a program
takes to run. By the measure introduced in that section, does the change we
just made make any difference? Be careful with your answer: it depends on
how we count “the length” of the list.

Observe that if the list never contained duplicates in the first place, then it
wouldn’t matter which list we check membership in—but if we knew the list didn’t
contain duplicates, we wouldn’t be using uniq in the first place! We will return to
the issue of lists and duplicate elements in chapter 19.

uniq: Example and Code Variations

As we mentioned earlier, there are other example sequences you might have written
down. Here’s a very different process:

• Start with the entire given list and with the empty answer (so far).

• For each list element, check whether it’s already in the answer so far. If it is,
ignore it, otherwise extend the answer with it.

• When there are no more elements in the list, the answer so far is the answer
for the whole list.

Notice that this solution assumes that we will be accumulating the answer as we
traverse the list. Therefore, we can’t even write the example with one parameter as
we did before. We would argue that a natural solution asks whether we can solve
the problem just from the structure of the data using the computation we are already
defining, as we did above. If we cannot, then we have to resort to an accumulator.
But because we can, the accumulator is unnecessary here and greatly complicated
even writing down examples (give it a try!).

uniq: Why Produce a List?

If you go back to the original statement of the uniq problem [section 10.9.1], you’ll
notice it said nothing about what order the output should have; in fact, it didn’t even
say the output needs to be a list (and hence have an order). In that case, we should

10.10. MONOMORPHIC LISTS AND POLYMORPHIC TYPES 173

think about whether a list even makes sense for this problem. In fact, if we don’t
care about order and don’t want duplicates (by definition of uniq), then there is a
much simpler solution, which is to produce a set. Pyret already has sets built in,
and converting the list to a set automatically takes care of duplicates. This is of
course cheating from the perspective of learning how to write uniq, but it is worth
remembering that sometimes the right data structure to produce isn’t necessarily
the same as the one we were given. Also, later [chapter 19], we will see how to
build sets for ourselves (at which point, uniq will look familiar, since it is at the
heart of set-ness).

10.10 Monomorphic Lists and Polymorphic Types

Earlier we wrote contracts like:

my-len :: List<Any> -> Number

my-max :: List<Any> -> Any

These are unsatisfying for several reasons. Consider my-max. The contract sug-
gests that any kind of element can be in the input list, but in fact that isn’t true:
the input [list: 1, "two", 3] is not valid, because we can’t compare 1 with
"two" or "two" with 3.

Exercise

What happens if we run 1 > "two" or "two" > 3?

Rather, what we mean is a list where all the elements are of the same kind, and Technically, elements that are
also comparable.the contract has not captured that. Furthermore, we don’t mean that my-max might

return any old type: if we supply it with a list of numbers, we will not get a string
as the maximum element! Rather, it will only return the kind of element that is in
the provided list.

In short, we mean that all elements of the list are of the same type, but they can
be of any type. We call the former monomorphic: “mono” meaning one, and “mor-
phic” meaning shape, i.e., all values have one type. But the function my-max itself
can operate over many of these kinds of lists, so we call it polymorphic (“poly”
meaning many).

Therefore, we need a better way of writing these contracts. Essentially, we
want to say that there is a type variable (as opposed to regular program variable)
that represents the type of element in the list. Given that type, my-max will return
an element of that type. We write this syntactically as follows:

fun my-max<T>(l :: List<T>) -> T: ... end

174 CHAPTER 10. PROCESSING LISTS

The notation <T> says that T is a type variable parameter that will be used in the
rest of the function (both the header and the body).

Using this notation, we can also revisit my-len. Its header now becomes:

fun my-len<T>(l :: List<T>) -> Number: ... end

Note that my-len did not actually “care” that whether all the values were of the
same type or not: it never looks at the individual elements, much less at pairs
of them. However, as a convention we demand that lists always be monomorphic.
This is important because it enables us to process the elements of the list uniformly:
if we know how to process elements of type T, then we will know how to process
a List<T>. If the list elements can be of truly any old type, we can’t know how to
process its elements.

Chapter 11

Introduction to Structured Data

Earlier we had our first look at types. Until now, we have only seen the types that
Pyret provides us, which is an interesting but nevertheless quite limited set. Most
programs we write will contain many more kinds of data.

11.1 Understanding the Kinds of Compound Data

A First Peek at Structured Data

There are times when a datum has many attributes, or parts. We need to keep them
all together, and sometimes take them apart. For instance:

• An iTunes entry contains a bunch of information about a single song: not
only its name but also its singer, its length, its genre, and so on.

• Your GMail application contains a bunch of information about a single mes-
sage: its sender, the subject line, the conversation it’s part of, the body, and
quite a bit more.

175

176 CHAPTER 11. INTRODUCTION TO STRUCTURED DATA

In examples like this, we see the need for structured data: a single datum has
structure, i.e., it actually consists of many pieces. The number of pieces is fixed,
but may be of different kinds (some might be numbers, some strings, some images,
and different types may be mixed together in that one datum). Some might even be
other structured data: for instance, a date usually has at least three parts, the day,
month, and year. The parts of a structured datum are called its fields.

A First Peek at Conditional Data

Then there are times when we want to represent different kinds of data under a
single, collective umbrella. Here are a few examples:

• A traffic light can be in different states: red, yellow, or green. Collectively,Yes, in some countries there are
different or more colors and
color-combinations.

they represent one thing: a new type called a traffic light state.

• A zoo consists of many kinds of animals. Collectively, they represent one
thing: a new type called an animal. Some condition determines which par-
ticular kind of animal a zookeeper might be dealing with.

• A social network consists of different kinds of pages. Some pages represent
individual humans, some places, some organizations, some might stand for
activities, and so on. Collectively, they represent a new type: a social media
page.

• A notification application may report many kinds of events. Some are for
email messages (which have many fields, as we’ve discussed), some are for
reminders (which might have a timestamp and a note), some for instant mes-
sages (similar to an email message, but without a subject), some might even
be for the arrival of a package by physical mail (with a timestamp, shipper,
tracking number, and delivery note). Collectively, these all represent a new
type: a notification.

We call these “conditional” data because they represent an “or”: a traffic light is
red or green or yellow; a social medium’s page is for a person or location or
organization; and so on. Sometimes we care exactly which kind of thing we’re
looking at: a driver behaves differently on different colors, and a zookeeper feeds
each animal differently. At other times, we might not care: if we’re just counting
how many animals are in the zoo, or how many pages are on a social network, or
how many unread notifications we have, their details don’t matter. Therefore, there
are times when we ignore the conditional and treat the datum as a member of the
collective, and other times when we do care about the conditional and do different
things depending on the individual datum. We will make all this concrete as we
start to write programs.

11.2. DEFINING AND CREATING STRUCTURED AND CONDITIONAL DATA177

11.2 Defining and Creating Structured and Conditional
Data

We have used the word “data” above, but that’s actually been a bit of a lie. As we
said earlier, data are how we represent information in the computer. What we’ve
been discussing above is really different kinds of information, not exactly how they
are represented. But to write programs, we must wrestle concretely with represen-
tations. That’s what we will do now, i.e., actually show data representations of all
this information.

Defining and Creating Structured Data

Let’s start with defining structured data, such as an iTunes song record. Here’s a
simplified version of the information such an app might store:

• The song’s name, which is a String.

• The song’s singer, which is also a String.

• The song’s year, which is a Number.

Let’s now introduce the syntax by which we can teach this to Pyret:

data ITunesSong: song(name, singer, year) end

This tells Pyret to introduce a new type of data, in this case called ITunesSong. The We follow a convention that
types always begin with a
capital letter.

way we actually make one of these data is by calling song with three parameters;
for instance:

It’s worth noting that music
managers that are capable of
making distinctions between,
say, Dance, Electronica, and
Electronic/Dance, classify two
of these three songs by a single
genre: “World”.

<structured-examples> ::=

song("La Vie en Rose", "Édith Piaf", 1945)

song("Stressed Out", "twenty one pilots", 2015)

song("Waqt Ne Kiya Kya Haseen Sitam", "Geeta Dutt", 1959)

Always follow a data definition with a few concrete instances of the data! This
makes sure you actually do know how to make data of that form. Indeed, it’s not
essential but a good habit to give names to the data we’ve defined, so that we can
use them later:

lver = song("La Vie en Rose", "Édith Piaf", 1945)

so = song("Stressed Out", "twenty one pilots", 2015)

wnkkhs = song("Waqt Ne Kiya Kya Haseen Sitam", "Geeta Dutt", 1959)

In terms of the directory, structured data are no different from simple data.
Each of the three definitions above creates an entry in the directory, as follows:

Directory

178 CHAPTER 11. INTRODUCTION TO STRUCTURED DATA

• lver

→

song("La Vie en Rose", "Édith Piaf", 1945)

• so

→

song("Stressed Out", "twenty one pilots", 2015)

• wnkkhs

→

song("Waqt Ne Kiya Kya Haseen Sitam","Geeta Dutt", 1959)

Annotations for Structured Data

Recall that in [section 5.2.2] we discussed annotating our functions. Well, we
can annotate our data, too! In particular, we can annotate both the definition of
data and their creation. For the former, consider this data definition, which makes
the annotation information we’d recorded informally in text a formal part of the
program:

data ITunesSong: song(name :: String, singer :: String, year :: Number) end

Similarly, we can annotate the variables bound to examples of the data. But what
should we write here?

lver :: ___ = song("La Vie en Rose", "Édith Piaf", 1945)

Recall that annotations takes names of types, and the new type we’ve created is
called ITunesSong. Therefore, we should write

lver :: ITunesSong = song("La Vie en Rose", "Édith Piaf", 1945)

11.2. DEFINING AND CREATING STRUCTURED AND CONDITIONAL DATA179

Do Now!

What happens if we instead write this?

lver :: String = song("La Vie en Rose", "Édith Piaf", 1945)

What error do we get? How about if instead we write these?

lver :: song = song("La Vie en Rose", "Édith Piaf", 1945)

lver :: 1 = song("La Vie en Rose", "Édith Piaf", 1945)

Make sure you familiarize yourself with the error messages that you get.

Defining and Creating Conditional Data

The data construct in Pyret also lets us create conditional data, with a slightly
different syntax. For instance, say we want to define the colors of a traffic light:

data TLColor:

| Red

| Yellow

| Green

end

Each | (pronounced “stick”) introduces another option. You would make instances Conventionally, the names of
the options begin in lower-case,
but if they have no additional
structure, we often capitalize
the initial to make them look
different from ordinary
variables: i.e., Red rather than
red.

of traffic light colors as

Red

Green

Yellow

A more interesting and common example is when each condition has some
structure to it; for instance:

data Animal:

| boa(name :: String, length :: Number)

| armadillo(name :: String, liveness :: Boolean)

end

We can make examples of them as you would expect: “In Texas, there ain’t nothin’ in
the middle of the road except
yellow stripes and a dead
armadillo.”—Jim Hightower

b1 = boa("Ayisha", 10)

b2 = boa("Bonito", 8)

a1 = armadillo("Glypto", true)

We call the different conditions variants.

180 CHAPTER 11. INTRODUCTION TO STRUCTURED DATA

Do Now!

How would you annotate the three variable bindings?

Notice that the distinction between boas and armadillos is lost in the annotation.

b1 :: Animal = boa("Ayisha", 10)

b2 :: Animal = boa("Bonito", 8)

a1 :: Animal = armadillo("Glypto", true)

When defining a conditional datum the first stick is actually optional, but adding
it makes the variants line up nicely. This helps us realize that our first example

data ITunesSong: song(name, singer, year) end

is really just the same as

data ITunesSong:

| song(name, singer, year)

end

i.e., a conditional type with just one condition, where that one condition is struc-
tured.

11.3 Programming with Structured and Conditional Data

So far we’ve learned how to create structured and conditional data, but not yet how
to take them apart or write any expressions that involve them. As you might expect,
we need to figure out how to

• take apart the fields of a structured datum, and

• tell apart the variants of a conditional datum.

As we’ll see, Pyret also gives us a convenient way to do both together.

Extracting Fields from Structured Data

Let’s write a function that tells us how old a song is. First, let’s think about what
the function consumes (an ITunesSong) and produces (a Number). This gives us a
rough skeleton for the function:
<song-age> ::=

fun song-age(s :: ITunesSong) -> Number:

<song-age-body>

end

11.3. PROGRAMMING WITH STRUCTURED AND CONDITIONAL DATA181

We know that the form of the body must be roughly:
<song-age-body> ::=

2016 - <get the song year>

We can get the song year by using Pyret’s field access, which is a . followed by a
field’s name—in this case, year—following the variable that holds the structured
datum. Thus, we get the year field of s (the parameter to song-age) with

s.year

So the entire function body is:

fun song-age(s :: ITunesSong) -> Number:

2016 - s.year

end

It would be good to also record some examples (<structured-examples>), giving
us a comprehensive definition of the function:

fun song-age(s :: ITunesSong) -> Number:

2016 - s.year

where:

song-age(lver) is 71

song-age(so) is 1

song-age(wnkkhs) is 57

end

Telling Apart Variants of Conditional Data

Now let’s see how we tell apart variants. For this, we again use cases, as we saw
for lists. We create one branch for each of the variants. Thus, if we wanted to
compute advice for a driver based on a traffic light’s state, we might write:

fun advice(c :: TLColor) -> String:

cases (TLColor) c:

| Red => "wait!"

| Yellow => "get ready..."

| Green => "go!"

end

end

Do Now!

What happens if you leave out the =>?

182 CHAPTER 11. INTRODUCTION TO STRUCTURED DATA

Do Now!

What if you leave out a variant? Leave out the Red variant, then try both
advice(Yellow) and advice(Red).

Processing Fields of Variants

In this example, the variants had no fields. But if the variant has fields, Pyret
expects you to list names of variables for those fields, and will then automatically
bind those variables—so you don’t need to use the .-notation to get the field values.

To illustrate this, assume we want to get the name of any animal:
<animal-name> ::=

fun animal-name(a :: Animal) -> String:

<animal-name-body>

end

Because an Animal is conditionally defined, we know that we are likely to want a
cases to pull it apart; furthermore, we should give names to each of the fields:Note that the names of the

variables do not have to match
the names of fields.
Conventionally, we give longer,
descriptive names to the field
definitions and short names to
the corresponding variables.

<animal-name-body> ::=

cases (Animal) a:

| boa(n, l) => ...

| armadillo(n, l) => ...

end

In both cases, we want to return the field n, giving us the complete function:

fun animal-name(a :: Animal) -> String:

cases (Animal) a:

| boa(n, l) => n

| armadillo(n, l) => n

end

where:

animal-name(b1) is "Ayisha"

animal-name(b2) is "Bonito"

animal-name(a1) is "Glypto"

end

Let’s look at how Pyret would evaluate a function call like

animal-name(boa("Bonito", 8))

11.3. PROGRAMMING WITH STRUCTURED AND CONDITIONAL DATA183

The argument boa("Bonito", 8) is a value. In the same way as we substitute
simple data types like strings and numbers for parameters when we evaluate a func-
tion, we do the same thing here. After substituting, we are left with the following
expression to evaluate:

cases (Animal) boa("Bonito", 8):

| boa(n, l) => n

| armadillo(n, l) => n

end

Next, Pyret determines which case matches the data (the first one, for boa, in
this case). It then substitutes the field names with the corresponding components
of the datum result expression for the matched case. In this case, we will substitute
uses of n with "Bonito" and uses of l with 8. In this program, the entire result
expression is a use of n, so the result of the program in this case is "Bonito".

184 CHAPTER 11. INTRODUCTION TO STRUCTURED DATA

Chapter 12

Collections of Structured Data

As we were looking at structured data [chapter 11], we came across several situa-
tions where we have not one but many data: not one song but a playlist of them,
not one animal but a zoo full of them, not one notification but several, not just one
message (how we wish!) but many in our inbox, and so on. In general, then, we
rarely have just a single structured datum: if we know we have only one, we might One notable exception:

consider the configuration or
preference information for a
system. This might be stored in
a file and updated through a
user interface. Even though
there is (usually) only one
configuration at a time, it may
have so many pieces that we
won’t want to clutter our
program with a large number of
variables; instead, we might
create a structure representing
the configuration, and load just
one instance of it. In effect,
what would have been
unconnected variables now
become a set of linked fields.

just have a few separate variables representing the pieces without going to the ef-
fort of creating and taking apart a structure. In general, therefore, we want to talk
about collections of structured data. Here are more examples:

• The set of messages matching a tag.

• The list of messages in a conversation.

• The set of friends of a user.

Do Now!

How are collective data different from structured data?

In structured data, we have a fixed number of possibly different kinds of values.
In collective data, we have a variable number of the same kind of value. For
instance, we don’t say up front how many songs must be in a playlist or how many
pages a user can have; but every one of them must be a song or a page. (A page
may, of course, be conditionally defined, but ultimately everything in the collection
is still a page.)

Observe that we’ve mentioned both sets and lists above. The difference be-
tween a set and a list is that a set has no order, but a list has an order. This distinc-
tion is not vital now but we will return to it later [section 12.2].

185

186 CHAPTER 12. COLLECTIONS OF STRUCTURED DATA

Of course, sets and lists are not the only kinds of collective data we can have.
Here are some more:

• A family tree of people.

• The filesystem on your computer.

• A seating chart at a party.

• A social network of pages.

and so on. For the most part these are just as easy to program and manipulate as
the earlier collective data once we have some experience, though some of them
[section 21.1] can involve more subtlety.

We have already seen tables [chapter 7], which are a form of collective, struc-
tured data. Now we will look at a few more, and how to program them.

12.1 Lists as Collective Data

We have already seen one example of a collection in some depth before: lists. A
list is not limited to numbers or strings; it can contain any kind of value, including
structured ones. For instance, using our examples from earlier [section 11.2.1], we
can make a list of songs:

song-list = [list: lver, so, wnkkhs]

This is a three-element list where each element is a song:

check:

song-list.length() is 3

song-list.first is lver

end

Thus, what we have seen earlier about building functions over lists [chap-
ter 10] applies here too. To illustrate, suppose we wish to write the function
oldest-song-age, which consumes a list of songs and produces the oldest song
in the list. (There may be more than one song from the same year; the age—by our
measure—of all those songs will be the same. If this happens, we just pick one of
the songs from the list. Because of this, however, it would be more accurate to say
“an” rather than “the” oldest song.)

Let’s work through this with examples. To keep our examples easy to write,
instead of writing out the full data for the songs, we’ll refer to them just by their
variable names. Clearly, the oldest song in our list is bound to lvar.

12.1. LISTS AS COLLECTIVE DATA 187

oldest-song([list: lver, so, wnkkhs]) is lvar

oldest-song([list: so, wnkkhs]) is wnkkhs

oldest-song([list: wnkkhs]) is wnkkhs

oldest-song([list:]) is ???

What do we write in the last case? Recall that we saw this problem earlier
[section 10.6.1]: there is no answer in the empty case. In fact, the computation
here is remarkably similar to that of my-max, because it is essentially the same
computation, just asking for the minimum year (which would make the song the
oldest).

From our examples, we can see a solution structure echoing that of my-max.
For the empty list, we signal an error. Otherwise, we compute the oldest song in
the rest of the list, and compare its year against that of the first. Whichever has the
older year is the answer.

fun oldest-song(sl :: List<ITunesSong>) -> ITunesSong:

cases (List) sl:

| empty => raise("not defined for empty song lists")

| link(f, r) =>

cases (List) r:

| empty => f

| else =>

osr = oldest-song(r)

if osr.year < f.year:

osr

else:

f

end

end

end

end

Note that there is no guarantee there will be only oldest song, and this is re-
flected in the possibility that osr.year may equal f.year. However, our problem
statement allowed us to pick just one such song, which is what we’ve done.

Do Now!

Modify the solution above to oldest-song-age, which computes the age of
the oldest song(s).

Haha, just kidding! You shouldn’t modify the previous solution at all! Instead,
you should leave it alone—it may come in handy for other purposes—and instead

188 CHAPTER 12. COLLECTIONS OF STRUCTURED DATA

build a new function to use it:

fun oldest-song-age(sl :: List<ITunesSong>) -> Number:

os = oldest-song(sl)

song-age(os)

where:

oldest-song-age(song-list) is 71

end

12.2 Sets as Collective Data

As we’ve already seen, for some problems we don’t care about the order of inputs,
nor about duplicates. Here are more examples where we don’t care about order or
duplicates:

• Your Web browser records which Web pages you’ve visited, and some Web
sites use this information to color visited links differently than ones you
haven’t seen. This color is typically independent of how many times you
have visited the page.

• During an election, a poll agent might record that you have voted, but does
not need to record how many times you have voted, and does not care about
the order in which people vote.

For such problems a list is a bad fit relative to a set. Here we will see how Pyret’s
built-in sets work. Later [chapter 19] we will see how we can build sets for our-
selves.

First, we can define sets just as easily as we can lists:

import sets as S

song-set = [S.set: lver, so, wnkkhs]

Of course, due to the nature of the language’s syntax, we have to list the elements
in some order. Does it matter?

Do Now!

How can we tell whether Pyret cares about the order?

Here’s the simplest way to check:

check:

song-set2 = [S.set: so, wnkkhs, lver]

song-set is song-set2

end

12.2. SETS AS COLLECTIVE DATA 189

If we want to be especially cautious, we can write down all the other orderings of
the elements as well, and see that Pyret doesn’t care.

Exercise

How many different orders are there?

Similarly for duplicates:

check:

song-set3 = [S.set: lver, so, wnkkhs, so, so, lver, so]

song-set is song-set3

song-set3.size() is 3

end

We can again try several different kinds of duplication and confirm that sets ignore
them.

Picking Elements from Sets

This lack of an ordering, however, poses a problem. With lists, it was meaningful
to talk about the “first” and corresponding “rest”. By definition, with sets there is
not “first” element. In fact, Pyret does not even offer fields similar to first and
rest. In its place is something a little more accurate but complex.

The .pick method returns a random element of a set. It produces a value of
type Pick (which we get with include pick). When we pick an element, there
are two possibilities. One is that the set is empty (analogous to a list being empty),
which gives us a pick-none value. The other option is called pick-some, which
gives us an actual member of the set.

The pick-some variant of Pick has two fields, not one. To understand why
takes a moment’s work. Let’s explore it by choosing an element of a set:

fun an-elt(s :: S.Set):

cases (Pick) s.pick():

| pick-none => raise("empty set")

| pick-some(e, r) => e

end

end

(Notice that we aren’t using the r field in the pick-some case.)

Do Now!

Can you guess why we didn’t write examples for an-elt?

190 CHAPTER 12. COLLECTIONS OF STRUCTURED DATA

Do Now!

Run an-elt(song-set). What element do you get?
Run it again. Run it five more times.
Do you get the same element every time?

No you don’t! Pyret is designed to not always return the same element when pick-Well, actually, it’s impossible to
be certain you don’t. There is a
very, very small likelihood you
get the exact same element on
every one of six runs. If it
happens to you, keep running it
more times!

ing from a set. This is on purpose: it’s to drive home the random nature of choosing
from a set, and to prevent your program from accidentally depending on a particu-
lar order that Pyret might use.

Do Now!

Given that an-elt does not return a predictable element, what (if any) tests
can we write for it?

Observe that though we can’t predict which element an-elt will produce, we do
know it will produce an element of the set. Therefore, what we can write are tests
that ensure the resulting element is a member of the set—though in this case, that
would not be particularly surprising.

Computing with Sets

Once we have picked an element from a set, it’s often useful to obtain the set
consisting of the remaining elements. We have already seen that choosing the first
field of a pick-some is similar to taking the “first” of a set. We therefore want a
way to get the “rest” of the set. However, we want the rest to what we obtain after
excluding this particular “first”. That’s what the second field of a pick-some is:
what’s left of the set.

Given this, we can write functions over sets that look roughly analogous to
functions over lists. For instance, suppose we want to compute the size of a set.
The function looks similar to my-len [section 10.2]:

fun my-set-size(shadow s :: S.Set) -> Number:

cases (Pick) s.pick():

| pick-none => 0

| pick-some(e, r) =>

1 + my-set-size(r)

end

end

Though the process of deriving this is similar to that we used for my-len, the
random nature of picking elements makes it harder to write examples that the actual
function’s behavior will match.

12.3. COMBINING STRUCTURED AND COLLECTIVE DATA 191

12.3 Combining Structured and Collective Data

As the above examples illustrate, a program’s data organization will often involve
multiple kinds of compound data, often deeply intertwined. Let’s first think of
these in pairs.

Exercise

Come up with examples that combine:

• structured and conditional data,

• structured and collective data, and

• conditional and collective data.

You’ve actually seen examples of each of these above. Identify them.

Finally, we might even have all three at once. For instance, a filesystem is usu-
ally a list (collective) of files and folders (conditional) where each file has several
attributes (structured). Similarly, a social network has a set of pages (collective)
where each page is for a person, organization, or other thing (conditional), and each
page has several attributes (structured). Therefore, as you can see, combinations of
these arise naturally in all kinds of applications that we deal with on a daily basis.

Exercise

Take three of your favorite Web sites or apps. Identify the kinds of data they
present. Classify these as structured, conditional, and collective. How do
they combine these data?

12.4 Data Design Problem: Representing Quizzes

Now that you can make collections of structured data, you can approach creating
the data and programs for fairly sophisticated applications. Let’s try out a data-
design problem, where we will focus just on creating the data definition, but not on
writing the actual functions.

Problem Statement: You’ve been hired to help create software for giving
quizzes to students. The software will show the student a question, read in the
student’s answer, compare the student’s answer to the expected answer (sort of
like a Pyret example!), and produce the percentage of questions that the student
got right.

192 CHAPTER 12. COLLECTIONS OF STRUCTURED DATA

Your task is to create a data definition for capturing quizzes and expected an-
swers. Don’t worry about representing the student responses.

Do Now!

Propose an initial data structure for quizzes. Start by identifying the pieces
you might need and trying to write some sample questions.

We might imagine asking a quiz question like “what is 3 + 4?“. We would
expect the student to answer 7. What would capture this? A piece of structured
data with two fields like the following:

data Question:

basic-ques(text :: String, expect :: ???)

end

What’s a good type for the expected answer? This specific problem has a
numeric answer, but other questions might have other types of answers. Any is
therefore an appropriate type for the answer.

We would also need a list of Question to form an entire quiz.
Sometimes, quiz software allows students to ask for hints.

Do Now!

Assume we wanted to have some (but not all) questions with hints, which
would be text that a student could request for help with a problem. Modify
the current data definition to capture quizzes in which some questions have
hints and some do not.

A quiz should still be a list of questions, but the Question data definition needs
another variant in order to handle questions with hints. The following would work:

data Question:

| basic-ques(text :: String, expect :: Any)

| hint-ques(text :: String, expect :: Any, hint :: String)

end

A quiz is a List<Question>

We could imagine extending this example to introduce dependencies between
questions (such as one problem building on the skills of another), multiple choice
questions, checkbox questions, and so on.

12.4. DATA DESIGN PROBLEM: REPRESENTING QUIZZES 193

Responsible Computing: Consider the Process Being Displaced

Many companies have tried to improve education through software systems
that automate tasks otherwise done by teachers. There are systems that show
students a video, then give them quizzes (akin to what you just developed) to
check what they have learned. A more extreme version interleaves videos and
quizzes, thus teaching entire courses at scale, without the need for teacher
intervention.

Massively-online courses (MOOCs) are a style of course that makes
heavy use to computer automation, to enable reaching many more students
without needing more teachers. Proponents of MOOCs and related educa-
tional technology tools have promised game-changing impacts of such tools,
promising to extend quality education to students around the world who oth-
erwise might lack access to quality teachers. Technology investors (and in-
deed some universities) dove in behind these technologies, hoping for an
educational revolution at scale.

Unfortunately, research and evaluation have shown that replacing educa-
tion with automated systems, even ones with sophisticated features based on
data analysis and predictions that identify skills that students haven’t quite
mastered, doesn’t lead to the promised gains in learning. Why? It turns
out that teaching is about more than choosing questions, gathering student
work, and giving grades. Teachers provide encouragement, reassurance, and
an understanding of an individual students’ situation. Today’s computational
systems don’t do this. The generally-accepted wisdom around these tools
(backed by three prior decades of research) is that they are best used to com-
plement direct instruction by a human teacher. In such a setting, some tools
have resulted in solid performance gains on the parts of students.

The social-responsibility takeaway here is that you need to consider all
the features of the system you might be trying to replace with a computational
approach. Algorithmic quiz-taking tools have genuine value in some specific
context, but they aren’t a replacement for all of teaching. A failure to under-
stand the many aspects of teaching, and which ones do and do not make it
effective for educating students, could have avoided a lot of inaccurate hype
about the promise of algorithmic instruction.

194 CHAPTER 12. COLLECTIONS OF STRUCTURED DATA

Chapter 13

Recursive Data

In section 11.3.2, we used cases to distinguish between different forms of condi-
tional data. We had used cases earlier, specifically to distinguish between empty
and non-empty lists in chapter 10. This suggests that lists are also a form of condi-
tional data, just one that is built into Pyret. Indeed, this is the case.

To understand lists as conditional data, let’s create a data definition for a new
type NumList which contains a list of numbers (this differs from built-in lists,
which work with any type of element). To avoid conflicts with Pyret’s built-in
empty value and link operator, we’ll have NumList use nl-empty as its empty
value and nl-link as the operator that builds new lists. Here’s a partial definition:

data NumList:

| nl-empty

| nl-link(_________)

end

Do Now!

Fill in the blank in the nl-link condition with the corresponding field(s)
and corresponding types. The blank could contain anywhere from 0 through
multiple fields.

From working with lists earlier, hopefully you remembered that list construc-
tors take two inputs: the first element of the list and a list to build on (the rest of
the list). That suggests that we need two fields here:

data NumList:

| nl-empty

| nl-link(first :: _________, rest :: _________)

end

195

196 CHAPTER 13. RECURSIVE DATA

Do Now!

Fill in the types for first and rest if you haven’t already.

Since we’re making a list of numbers, the first field should contain type
Number. What about the rest field? It needs to be a list of numbers, so its type
should be NumList.

data NumList:

| nl-empty

| nl-link(first :: Number, rest :: NumList)

end

Notice something interesting (and new) here: the type of the rest field is the
same type (NumList) as the conditional data that we are defining. We can, quite
literally, draw the arrows that show the self-referential part of the definition:

Does that actually work? Yes. Think about how we might build up a list with
the numbers 2, 7, and 3 (in that order). We start with nl-empty, which is a valid
NumList. We then use nl-link to add the numbers onto that list, as follows:

nl-empty

nl-link(3, nl-empty)

nl-link(7, nl-link(3, nl-empty))

nl-link(2, nl-link(7, nl-link(3, nl-empty)))

In each case, the rest argument is itself a valid NumList. While defining data
in terms of itself might seem problematic, it works fine because in order to build
actual data, we had to start with the nl-empty condition, which does not refer to
NumList.

Data definitions that build on fields of the same type are called recursive data.
Recursive data definitions are powerful because they permit us to create data that
are unbounded or arbitrarily-sized. Given a NumList, there is an easy way to make
a new, larger one: just use nl-link. So, we need to consider larger lists:

nl-link(1,

nl-link(2,

13.1. FUNCTIONS TO PROCESS RECURSIVE DATA 197

nl-link(3,

nl-link(4,

nl-link(5,

nl-link(6,

nl-link(7,

nl-link(8,

nl-empty))))

13.1 Functions to Process Recursive Data

Let’s try to write a function contains-3, which returns true if the NumList con-
tains the value 3, and false otherwise.

First, our header:

fun contains-3(nl :: NumList) -> Boolean:

doc: "Produces true if the list contains 3, false otherwise"

end

Next, some tests:

fun contains-3(nl :: NumList) -> Boolean:

doc: "Produces true if the list contains 3, false otherwise"

where:

contains-3(nl-empty) is false

contains-3(nl-link(3, nl-empty)) is true

contains-3(nl-link(1, nl-link(3, nl-empty))) is true

contains-3(nl-link(1, nl-link(2, nl-link(3, nl-link(4, nl-empty))))) is true

contains-3(nl-link(1, nl-link(2, nl-link(5, nl-link(4, nl-empty))))) is false

end

As we did in section 11.3.3, we will use cases to distinguish the variants. In
addition, since we are going to have to use the fields of nl-link to compute a
result in that case, we will list those in the initial code outline:

fun contains-3(nl :: NumList) -> Boolean:

doc: "Produces true if the list contains 3, false otherwise"

cases (NumList) nl:

| nl-empty => ...

| nl-link(first, rest) =>

... first ...

... rest ...

end

198 CHAPTER 13. RECURSIVE DATA

end

Following our examples, the answer must be false in the nl-empty case. In the
nl-link case, if the first element is 3, we’ve successfully answered the question.
That only leaves the case where the argument is an nl-link and the first element
does not equal 3:

fun contains-3(nl :: NumList) -> Boolean:

cases (NumList) nl:

| nl-empty => false

| nl-link(first, rest) =>

if first == 3:

true

else:

handle rest here

end

end

end

Since we know rest is a NumList (based on the data definition), we can use a
cases expression to work with it. This is sort of like filling in a part of the template
again:

fun contains-3(nl :: NumList) -> Boolean:

cases (NumList) nl:

| nl-empty => false

| nl-link(first, rest) =>

if first == 3:

true

else:

cases (NumList) rest:

| nl-empty => ...

| nl-link(first-of-rest, rest-of-rest) =>

... first-of-rest ...

... rest-of-rest ...

end

end

end

end

If the rest was empty, then we haven’t found 3 (just like when we checked the
original argument, nl). If the rest was a nl-link, then we need to check if the
first thing in the rest of the list is 3 or not:

13.1. FUNCTIONS TO PROCESS RECURSIVE DATA 199

fun contains-3(nl :: NumList) -> Boolean:

cases (NumList) nl:

| nl-empty => false

| nl-link(first, rest) =>

if first == 3:

true

else:

cases (NumList) rest:

| nl-empty => false

| nl-link(first-of-rest, rest-of-rest) =>

if first-of-rest == 3:

true

else:

fill in here ...

end

end

end

end

end

Since rest-of-rest is a NumList, we can fill in a cases for it again:

fun contains-3(nl :: NumList) -> Boolean:

cases (NumList) nl:

| nl-empty => false

| nl-link(first, rest) =>

if first == 3:

true

else:

cases (NumList) rest:

| nl-empty => false

| nl-link(first-of-rest, rest-of-rest) =>

if first-of-rest == 3:

true

else:

cases (NumList) rest-of-rest:

| nl-empty => ...

| nl-link(first-of-rest-of-rest, rest-of-rest-of-rest) =>

... first-of-rest-of-rest ...

... rest-of-rest-of-rest ...

end

200 CHAPTER 13. RECURSIVE DATA

end

end

end

end

end

See where this is going? Not anywhere good. We can copy this cases expres-
sion as many times as we want, but we can never answer the question for a list that
is just one element longer than the number of times we copy the code.

So what to do? We tried this approach of using another copy of cases based
on the observation that rest is a NumList, and cases provides a meaningful way
to break apart a NumList; in fact, it’s what the recipe seems to lead to naturally.

Let’s go back to the step where the problem began, after filling in the template
with the first check for 3:

fun contains-3(nl :: NumList) -> Boolean:

cases (NumList) nl:

| nl-empty => false

| nl-link(first, rest) =>

if first == 3:

true

else:

what to do with rest?

end

end

end

We need a way to compute whether or not the value 3 is contained in rest.
Looking back at the data definition, we see that rest is a perfectly valid NumList,
simply by the definition of nl-link. And we have a function (or, most of one)
whose job is to figure out if a NumList contains 3 or not: contains-3. That ought
to be something we can call with rest as an argument, and get back the value we
want:

fun contains-3(nl :: NumList) -> Boolean:

cases (NumList) nl:

| nl-empty => false

| nl-link(first, rest) =>

if first == 3:

true

else:

contains-3(rest)

13.1. FUNCTIONS TO PROCESS RECURSIVE DATA 201

end

end

end

And lo and behold, all of the tests defined above pass. It’s useful to step through
what’s happening when this function is called. Let’s look at an example:

contains-3(nl-link(1, nl-link(3, nl-empty)))

First, we substitute the argument value in place of nl everywhere it appears;
that’s just the usual rule for function calls.

=> cases (NumList) nl-link(1, nl-link(3, nl-empty)):

| nl-empty => false

| nl-link(first, rest) =>

if first == 3:

true

else:

contains-3(rest)

end

end

Next, we find the case that matches the constructor nl-link, and substitute the
corresponding pieces of the nl-link value for the first and rest identifiers.

=> if 1 == 3:

true

else:

contains-3(nl-link(3, nl-empty))

end

Since 1 isn’t 3, the comparison evaluates to false, and this whole expression
evaluates to the contents of the else branch.

=> if false:

true

else:

contains-3(nl-link(3, nl-empty))

end

=> contains-3(nl-link(3, nl-empty))

This is another function call, so we substitute the value nl-link(3, nl-empty),
which was the rest field of the original input, into the body of contains-3 this
time.

202 CHAPTER 13. RECURSIVE DATA

=> cases (NumList) nl-link(3, nl-empty):

| nl-empty => false

| nl-link(first, rest) =>

if first == 3:

true

else:

contains-3(rest)

end

end

Again, we substitute into the nl-link branch.

=> if 3 == 3:

true

else:

contains-3(nl-empty)

end

This time, since 3 is 3, we take the first branch of the if expression, and the
whole original call evaluates to true.

=> if true:

true

else:

contains-3(nl-empty)

end

=> true

An interesting feature of this trace through the evaluation is that we reached
the expression contains-3(nl-link(3, nl-empty)), which is a normal call to
contains-3; it could even be a test case on its own. The implementation works
by doing something (checking for equality with 3) with the non-recursive parts
of the datum, and combining that result with the result of the same operation
(contains-3) on the recursive part of the datum. This idea of doing recursion
with the same function on self-recursive parts of the datatype lets us extend our
template to handle recursive fields.

13.2 A Template for Processing Recursive Data

Stepping back, we have actually derived a new way to approach writing functions
over recursive data. Back in chapter 10, we had you write functions over lists

13.2. A TEMPLATE FOR PROCESSING RECURSIVE DATA 203

by writing a sequence of related examples, using substitution across examples to
derive a program that called the function on the rest of the list. Here, we are
deriving that structure from the shape of the data itself.

In particular, we can develop a function over recursive data by breaking a datum
into its variants (using cases), pulling out the fields of each variant (by listing the
field names), then calling the function itself on any recursive fields (fields of the
same type). For NumList, these steps yield the following code outline:

#|

fun num-list-fun(nl :: NumList) -> ???:

cases (NumList) nl:

| nl-empty => ...

| nl-link(first, rest) =>

... first ...

... num-list-fun(rest) ...

end

end

|#

Here, we are using a generic function name, num-list-fun, to illustrate that this
is the outline for any function that processes a NumList.

We refer to this code outline as a template. Every data definition has a cor-
responding template which captures how to break a value of that definition into
cases, pull out the fields, and use the same function to process any recursive fields.

Strategy: Writing a Template for Recursive Data

Given a recursive data definition, use the following steps to create the (reusable)
template for that definition:

1. Create a function header (using a general-purpose placeholder name if
you aren’t yet writing a specific function)

2. Use cases to break the recursive-data input into its variants

3. In each case, list each of its fields in the answer portion of the case

4. Call the function itself on any recursive fields

The power of the template lies in its universality. If you are asked to write a
specific function (such as contains-3) over recursive data (NumList), you can
reproduce or copy (if you already wrote it down) the template, replace the generic

204 CHAPTER 13. RECURSIVE DATA

function name in the template with the one for your specific function, then fill in
the ellipses to finish the function. This leads to a revised description of our design
recipe:

To handle recursive data, the design recipe just needs to be modified to have this
extended template. When you see a recursive data definition (of which there will
be many when programming in Pyret), you should naturally start thinking about
what the recursive calls will return and how to combine their results with the other,
non-recursive pieces of the datatype.

You have now seen two approaches to writing functions on recursive data:
working out a sequence of related examples and modifying the template. Both
approaches get you to the same final function. The power of the template, how-
ever, is that it scales to more complicated data definitions (where writing examples
by hand would prove tedious). We will see examples of this as our data get more
complex in coming chapters.

Exercise

Use the design recipe to write a function contains-n that takes a NumList

and a Number, and returns whether that number is in the NumList.

Exercise

Use the design recipe to write a function sum that takes a NumList, and re-
turns the sum of all the numbers in it. The sum of the empty list is 0.

Exercise

Use the design recipe to write a function remove-3 that takes a NumList,
and returns a new NumList with any 3’s removed. The remaining elements
should all be in the list in the same order they were in the input.

Exercise

Write a data definition called NumListList that represents a list of NumLists,
and use the design recipe to write a function sum-of-lists that takes a
NumListList and produces a NumList containing the sums of the sub-lists.

Exercise

Write a data definition and corresponding template for StrList, which cap-
tures lists of strings.

Chapter 14

Trees

14.1 Data Design Problem – Ancestry Data

Imagine that we wanted to manage ancestry information for purposes of a medical
research study. Specifically, we want to record people’s birthyear, eye colors, and
genetic parents. Here’s a sample table of such data, with one row for each person:

ancestors = table: name, birthyear, eyecolor, female-parent, male-parent

row: "Anna", 1997, "blue", "Susan", "Charlie"

row: "Susan", 1971, "blue", "Ellen", "Bill"

row: "Charlie", 1972, "green", "", ""

row: "Ellen", 1945, "brown", "Laura", "John"

row: "John", 1922, "brown", "", "Robert"

row: "Laura", 1922, "brown", "", ""

row: "Robert", 1895, "blue", "", ""

end

For our research, we want to be able to answer questions such as the following:

• Who are the genetic grandparents of a specific person?

• How frequent is each eye color?

• Is one specific person an ancestor of another specific person?

• How many generations do we have information for?

• Does one’s eye color correlate with the ages of their genetic parents when
they were born?

Let’s start with the first question:

205

206 CHAPTER 14. TREES

Do Now!

How would you compute a list of the known grandparents for a given person?
For purposes of this chapter, you may assume that each person has a unique
name (while this isn’t realistic in practice, it will simplify our computations
for the time being; we will revisit it later in the chapter).

(Hint: Make a task plan. Does it suggest any particular helper functions?)

Our task plan has two key steps: find the names of the genetic parents of the
named person, then find the names of the parents of each of those people. Both
steps share the need to compute the known parents from a name, so we should
create a helper function for that (we’ll call it parents-of). Since this sounds like
a routine table program, we can use it for a bit of review:

Computing Genetic Parents from an Ancestry Table

How do we compute a list of someone’s genetic parents? Let’s sketch a task plan
for that:

• filter the table to find the person

• extract the name of the female parent

• extract the name of the male parent

• make a list of those names

These are tasks we have seen before, so we can translate this plan directly into
code:

fun parents-of(t :: Table, who :: String) -> List<String>:

doc: "Return list of names of known parents of given name"

matches = filter-with(t, lam(r): r["name"] == who end)

if matches.length() > 0:

person-row = matches.row-n(0)

[list:

person-row["female-parent"],

person-row["male-parent"]]

else:

empty

end

where:

parents-of(ancestors, "Anna")

14.1. DATA DESIGN PROBLEM – ANCESTRY DATA 207

is [list: "Susan", "Charlie"]

parents-of(ancestors, "Kathi") is empty

end

Do Now!

Are you satisfied with this program? With the examples included in the
where block? Write down any critiques you have.

There are arguably some issues here. How many of these did you catch?

• The examples are weak: none of them consider people for whom we are
missing information on at least one parent.

• The list of names returned in the case of an unknown parent includes the
empty string, which isn’t actually a name. This could cause problems if we
use this list of names in a subsequent computation (such as to compute the
names of someone’s grandparents).

• If empty strings are not part of the output list, then we’d get the same result
from asking for the parents of "Robert" (who is in the table) as for "Kathi"
(who is not). These are fundamentally different cases, which arguably de-
mand different outputs so we can tell them apart.

To fix these problems, we need to remove the empty strings from the produced
list of parents and return something other than the empty list when a name is not in
the table. Since the output of this function is a list of strings, it’s hard to see what
to return that couldn’t be confused for a valid list of names. Our solution for now is
to have Pyret throw an error (like the ones you get when Pyret is not able to finish
running your program). Here’s a solution that handles both problems:

fun parents-of(t :: Table, who :: String) -> List<String>:

doc: "Return list of names of known parents of given name"

matches = filter-with(t, lam(r): r["name"] == who end)

if matches.length() > 0:

person-row = matches.row-n(0)

names =

[list: person-row["female-parent"],

person-row["male-parent"]]

L.filter(lam(n): not(n == "") end, names)

else:

raise("No such person " + who)

208 CHAPTER 14. TREES

end

where:

parents-of(ancestors, "Anna") is [list: "Susan", "Charlie"]

parents-of(ancestors, "John") is [list: "Robert"]

parents-of(ancestors, "Robert") is empty

parents-of(ancestors, "Kathi") raises "No such person"

end

The raise construct tells Pyret to halt the program and produce an error mes-
sage. The error message does not have to match the expected output type of the
program. If you run this function with a name that is not in the table, you’ll see an
error appear in the interactions pane, with no result returned.

Within the where block, we see how to check whether an expression will yield
an error: instead of using is to check the equality of values, we use raises to
check whether the provided string is a sub-string of the actual error produced by
the program.

Computing Grandparents from an Ancestry Table

Once we have the parents-of function, we should be able to compute the grand-
parents by computing parents of parents, as follows:

fun grandparents-of(anc-table: Table, person: String) -> List[String]:

doc: "compute list of known grandparents in the table"

glue together lists of mother’s parents and father’s parents

plist = parents-of(anc-table, person) # gives a list of two names

parents-of(anc-table, plist.first) +

parents-of(anc-table, plist.rest.first)

where:

grandparents("Anna") is [list: "Laura", "John"]

grandparents("Laura") is [list:]

grandparents("Kathi") is [list:]

end

Do Now!

Look back at our sample ancestry tree: for which people would this correctly
compute the list of grandparents?

This grandparents-of code works fine for someone who has both parents in
the table. For someone without two parents, however, the plist will have fewer

14.1. DATA DESIGN PROBLEM – ANCESTRY DATA 209

than two names, so the expression plist.rest.first (if not plist.first) will
yield an error.

Here’s a version that checks the number of parents before computing the set of
grandparents:

fun grandparents-of(anc-table :: Table, name :: String) -> List<String>:

doc: "compute list of known grandparents in the table"

glue together lists of mother’s parents and father’s parents

plist = parents-of(anc-table, name) # gives a list of two names

if plist.length == 2:

parents-of(anc-table, plist.first) + parents-of(anc-table, plist.rest.first)

else if plist.length == 1:

parents-of(anc-table, plist.first)

else: empty

end

end

What if we now wanted to gather up all of someone’s ancestors? Since we
don’t know how many generations there are, we’d need to use recursion. This
approach would also be expensive, since we’d end up filtering over the table over
and over, which checks every row of the table in each use of filter.

Look back at the ancestry tree picture. We don’t do any complicated filtering
there – we just follow the line in the picture immediately from a person to their
mother or father. Can we get that idea in code instead? Yes, through datatypes.

Creating a Datatype for Ancestor Trees

For this approach, we want to create a datatype for Ancestor Trees that has a vari-
ant (constructor) for setting up a person. Look back at our picture – what infor-
mation makes up a person? Their name, their mother, and their father (along with
birthyear and eyecolor, which aren’t shown in the picture). This suggests the fol-
lowing datatype, which basically turns a row into a person value:

data AncTree:

| person(

name :: String,

birthyear :: Number,

eye :: String,

mother :: ________,

father :: ________

)

end

210 CHAPTER 14. TREES

For example, anna’s row might look like:

anna-row = person("Anna", 1997, "blue", ???, ???)

What type do we put in the blanks? A quick brainstorm yields several ideas:

• person

• List<person>

• some new datatype

• AncTree

• String

Which should it be?
If we use a String, we’re back to the table row, and we don’t end up with a

way to easily get from one person to another. We should therefore make this an
AncTree.

data AncTree:

| person(

name :: String,

birthyear :: Number,

eye :: String,

mother :: AncTree,

father :: AncTree

)

end

Do Now!

Write the AncTree starting from Anna using this definition.

Did you get stuck? What do we do when we run out of known people? To
handle that, we must add an option in the AncTree definition to capture people for
whom we don’t know anything.

data AncTree:

| noInfo

| person(

name :: String,

birthyear :: Number,

eye :: String,

14.1. DATA DESIGN PROBLEM – ANCESTRY DATA 211

mother :: AncTree,

father :: AncTree

)

end

Here’s Anna’s tree written in this datatype:

anna-tree =

person("Anna", 1997, "blue",

person("Susan", 1971, "blue",

person("Ellen", 1945, "brown",

person("Laura", 1920, "blue", noInfo, noInfo),

person("John", 1920, "green",

noInfo,

person("Robert", 1893, "brown", noInfo, noInfo))),

person("Bill", 1946, "blue", noInfo, noInfo)),

person("Charlie", 1972, "green", noInfo, noInfo))

We could also have named each person data individually.

robert-tree = person("Robert", 1893, "brown", noInfo, noInfo)

laura-tree = person("Laura", 1920, "blue", noInfo, noInfo)

john-tree = person("John", 1920, "green", noInfo, robert-tree)

ellen-tree = person("Ellen", 1945, "brown", laura-tree, john-tree)

bill-tree = person("Bill", 1946, "blue", noInfo, noInfo)

susan-tree = person("Susan", 1971, "blue", ellen-tree, bill-tree)

charlie-tree = person("Charlie", 1972, "green", noInfo, noInfo)

anna-tree2 = person("Anna", 1997, "blue", susan-tree, charlie-tree)

The latter gives you pieces of the tree to use as other examples, but loses the
structure that is visible in the indentation of the first version. You could get to
pieces of the first version by digging into the data, such as writing anna-tree.mother.mother
to get to the tree starting from "Ellen".

Here’s the parents-of function written against AncTree:

fun parents-of-tree(tr :: AncTree) -> List<String>:

cases (AncTree) tr:

| noInfo => empty

| person(n, y, e, m, f) => [list: m.name, f.name]

person bit more complicated if parent is missing

end

end

212 CHAPTER 14. TREES

14.2 Programs to Process Ancestor Trees

How would we write a function to determine whether anyone in the tree had a
particular name? To be clear, we are trying to fill in the following code:

fun in-tree(at :: AncTree, name :: String) -> Boolean:

doc: "determine whether name is in the tree"

...

How do we get started? Add some examples, remembering to check both cases
of the AncTree definition:

fun in-tree(at :: AncTree, name :: String) -> Boolean:

doc: "determine whether name is in the tree"

...

where:

in-tree(anna-tree, "Anna") is true

in-tree(anna-tree, "Ellen") is true

in-tree(ellen-tree, "Anna") is false

in-tree(noInfo, "Ellen") is false

end

What next? When we were working on lists, we talked about the template, a
skeleton of code that we knew we could write based on the structure of the data.
The template names the pieces of each kind of data, and makes recursive calls on
pieces that have the same type. Here’s the template over the AncTree filled in:

fun in-tree(at :: AncTree, name :: String) -> Boolean:

doc: "determine whether name is in the tree"

cases (AncTree) at: # comes from AncTree being data with cases

| noInfo => ...

| person(n, y, e, m, f) => ... in-tree(m, name) ... in-tree(f, name)

end

where:

in-tree(anna-tree, "Anna") is true

in-tree(anna-tree, "Ellen") is true

in-tree(ellen-tree, "Anna") is false

in-tree(noInfo, "Ellen") is false

end

To finish the code, we need to think about how to fill in the ellipses.

• When the tree is noInfo, it has no more people, so the answer should be
false (as worked out in the examples).

14.3. SUMMARIZING HOW TO APPROACH TREE PROBLEMS 213

• When the tree is a person, there are three possibilities: we could be at a
person with the name we’re looking for, or the name could be in the mother’s
tree, or the name could be in the father’s tree.

We know how to check whether the person’s name matches the one we are
looking for. The recursive calls already ask about the name being in the
mother’s tree or father’s tree. We just need to combine those pieces into one
Boolean answer. Since there are three possibilities, we should combine them
with or

Here’s the final code:

fun in-tree(at :: AncTree, name :: String) -> Boolean:

doc: "determine whether name is in the tree"

cases (AncTree) at: # comes from AncTree being data with cases

| noInfo => false

| person(n, y, e, m, f) => (name == n) or in-tree(m, name) or in-tree(f, name)

n is the same as at.name

m is the same as at.mother

end

where:

in-tree(anna-tree, "Anna") is true

in-tree(anna-tree, "Ellen") is true

in-tree(ellen-tree, "Anna") is false

in-tree(noInfo, "Ellen") is false

end

14.3 Summarizing How to Approach Tree Problems

We design tree programs using the same design recipe that we covered on lists:

214 CHAPTER 14. TREES

Strategy: Writing a Program Over Trees

• Write the datatype for your tree, including a base/leaf case

• Write examples of your trees for use in testing

• Write the function name, parameters, and types (the fun line)

• Write where checks for your code

• Write the template, including the cases and recursive calls. Here’s
the template again for an ancestor tree, for an arbitrary function called
treeF:

fun treeF(name :: String, t :: AncTree) -> Boolean:

cases (AncTree) anct:

| unknown => ...

| person(n, y, e, m, f) =>

... treeF(name, m) ... treeF(name, f)

end

end

• Fill in the template with details specific to the problem

• Test your code using your examples

14.4 Study Questions

• Think of writing in-tree on a table (using filter-by) vs writing it on a tree.
How many times might each approach compare the name being sought against
a name in the table/tree?

• Why do we need to use a recursive function to process the tree?

• In what order will we check the names in the tree version?

For practice, try problems such as

• How many blue-eyed people are in the tree?

• How many people are in the tree?

• How many generations are in the tree?

14.4. STUDY QUESTIONS 215

• How many people have a given name in a tree?

• How many people have names starting with "A"?

• ... and so on

216 CHAPTER 14. TREES

Chapter 15

Functions as Data

It’s interesting to consider how expressive the little programming we’ve learned
so far can be. To illustrate this, we’ll work through a few exercises of interesting
concepts we can express using just functions as values. We’ll write two quite
different things, then show how they converge nicely.

15.1 A Little Calculus

If you’ve studied the differential calculus, you’ve come across curious sytactic
statements such as this:

3

3G
G2 = 2G

Let’s unpack what this means: the 3/3G, the G2, and the 2G.
First, let’s take on the two expressions; we’ll discuss one, and the discussion

will cover the other as well. The correct response to “what does G2 mean?” is, of
course, an error: it doesn’t mean anything, because G is an unbound identifier.

So what is it intended to mean? The intent, clearly, is to represent the function
that squares its input, just as 2G is meant to be the function that doubles its input.
We have nicer ways of writing those:

fun sq(x :: Number) -> Number: x * x end

fun dbl(x :: Number) -> Number: 2 * x end

and what we’re really trying to say is that the 3/3G (whatever that is) of sq is dbl. We’re assuming functions of
arity one in the variable that is
changing.

So now let’s unpack 3/3G, starting with its type. As the above example illus-
trates, 3/3G is really a function from functions to functions. That is, we can write
its type as follows:

d-dx :: ((Number -> Number) -> (Number -> Number))

217

218 CHAPTER 15. FUNCTIONS AS DATA

(This type might explain why your calculus course never explained this operation
this way—though it’s not clear that obscuring its true meaning is any better for
your understanding.)

Let us now implement d-dx. We’ll implement numerical differentiation, though
in principle we could also implement symbolic differentiation—using rules you
learned, e.g., given a polynomial, multiply by the exponent and reduce the expo-
nent by one—with a representation of expressions (a problem that will be covered
in more detail in a future release).

In general, numeric differentiation of a function at a point yields the value of
the derivative at that point. We have a handy formula for it: the derivative of 5 at G
is

5 (G + n) − 5 (G)
n

as n goes to zero in the limit. For now we’ll give the infinitesimal a small but fixed
value, and later [section 15.4] see how we can improve on this.

epsilon = 0.00001

We can now translate the above formula into a function:

d-dx-at :: (Number -> Number), Number -> Number

fun d-dx-at(f, x):

(f(x + epsilon) - f(x)) / epsilon

end

And sure enough, we can check and make sure it works as expected:

check:

d-dx-at(sq, 10) is-roughly dbl(10)

end

Confession: We chose the value
of epsilon so that the default
tolerance is-roughly works
for this example.

However, there is something unsatisfying about this. The function we’ve writ-
ten clearly does not have the type we described earlier! What we wanted was an
operation that takes just a function, and represents the platonic notion of differen-
tiation; but we’ve been forced, by the nature of numeric differentiation, to describe
the derivative at a point. We might instead like to write something like this:

fun d-dx(f):

(f(x + epsilon) - f(x)) / epsilon

end

15.1. A LITTLE CALCULUS 219

Do Now!

What’s the problem with the above definition?

If you didn’t notice, Pyret will soon tell you: x isn’t bound. Indeed, what is
x? It’s the point at which we’re trying to compute the numeric derivative. That is,
d-dx needs to return not a number but a function (as the type indicates) that will
consume this x: “Lambdas are relegated to

relative obscurity until Java
makes them popular by not
having them.”—James Iry, A
Brief, Incomplete, and Mostly
Wrong History of Programming
Languages

fun d-dx(f):

lam(x):

(f(x + epsilon) - f(x)) / epsilon

end

end

If we want to be a little more explicit we can annotate the inner function:

fun d-dx(f):

lam(x :: Number) -> Number:

(f(x + epsilon) - f(x)) / epsilon

end

end

Sure enough, this definition now works. We can, for instance, test it as follows
(note the use of num-floor to avoid numeric precision issues from making our
tests appear to fail):

d-dx-sq = d-dx(sq)

check:

ins = [list: 0, 1, 10, 100]

for map(n from ins):

num-floor(d-dx-sq(n))

end

is

for map(n from ins):

num-floor(dbl(n))

end

end

Now we can return to the original example that launched this investigation: what
the sloppy and mysterious notation of math is really trying to say is,

d-dx(lam(x): x * x end) = lam(x): 2 * x end

https://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
https://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
https://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html
https://james-iry.blogspot.com/2009/05/brief-incomplete-and-mostly-wrong.html

220 CHAPTER 15. FUNCTIONS AS DATA

or, in the notation of section 18.7,
3

3G
[G → G2] = [G → 2G]

Pity math textbooks for not wanting to tell us the truth!

15.2 A Helpful Shorthand for Anonymous Functions

Pyret offers a shorter syntax for writing anonymous functions. Though, stylisti-
cally, we generally avoid it so that our programs don’t become a jumble of special
characters, sometimes it’s particularly convenient, as we will see below. This syn-
tax is

{(a): b}

where a is zero or more arguments and b is the body. For instance, we can write
lam(x): x * x end as

{(x): x * x}

where we can see the benefit of brevity. In particular, note that there is no need for
end, because the braces take the place of showing where the expression begins and
ends. Similarly, we could have written d-dx as

fun d-dx-short(f):

{(x): (f(x + epsilon) - f(x)) / epsilon}

end

but many readers would say this makes the function harder to read, because the
prominent lam makes clear that d-dx returns an (anonymous) function, whereas
this syntax obscures it. Therefore, we will usually only use this shorthand syntax
for “one-liners”.

15.3 Streams From Functions

People typically think of a function as serving one purpose: to parameterize an
expression. While that is both true and the most common use of a function, it does
not justify having a function of no arguments, because that clearly parameterizes
over nothing at all. Yet functions of no argument also have a use, because functions
actually serve two purposes: to parameterize, and to suspend evaluation of the body
until the function is applied. In fact, these two uses are orthogonal, in that one
can employ one feature without the other. Below, we will focus on delay without
abstraction (the other shows up in other computer science settings).

15.3. STREAMS FROM FUNCTIONS 221

Let’s consider the humble list. A list can be only finitely long. However,
there are many lists (or sequences) in nature that have no natural upper bound:
from mathematical objects (the sequence of natural numbers) to natural ones (the
sequence of hits to a Web site). Rather than try to squeeze these unbounded lists
into bounded ones, let’s look at how we might represent and program over these
unbounded lists.

First, let’s write a program to compute the sequence of natural numbers:

fun nats-from(n):

link(n, nats-from(n + 1))

end

Do Now!

Does this program have a problem?

While this represents our intent, it doesn’t work: running it—e.g., nats-from(0)—
creates an infinite loop evaluating nats-from for every subsequent natural number.
In other words, we want to write something very like the above, but that doesn’t
recur until we want it to, i.e., on demand. In other words, we want the rest of the
list to be lazy.

This is where our insight into functions comes in. A function, as we have just
noted, delays evaluation of its body until it is applied. Therefore, a function would,
in principle, defer the invocation of nats-from(n + 1) until it’s needed.

Except, this creates a type problem: the second argument to link needs to be a
list, and cannot be a function. Indeed, because it must be a list, and every value that
has been constructed must be finite, every list is finite and eventually terminates in
empty. Therefore, we need a new data structure to represent the links in these lazy
lists (also known as streams):
<stream-type-def> ::=

data Stream<T>:

| lz-link(h :: T, t :: (-> Stream<T>))

end

where the annotation (-> Stream<T>) means a function from no arguments
(hence the lack of anything before ->), also known as a thunk. Note that the way
we have defined streams they must be infinite, since we have provided no way to
terminate them.

Let’s construct the simplest example we can, a stream of constant values:

ones = lz-link(1, lam(): ones end)

222 CHAPTER 15. FUNCTIONS AS DATA

Pyret will actually complain about this definition. Note that the list equivalent of
this also will not work:

ones = link(1, ones)

because ones is not defined at the point of definition, so when Pyret evaluates
link(1, ones), it complains that ones is not defined. However, it is being overly
conservative with our former definition: the use of ones is “under a lam”, and
hence won’t be needed until after the definition of ones is done, at which point
ones will be defined. We can indicate this to Pyret by using the keyword rec:

rec ones = lz-link(1, lam(): ones end)

Note that in Pyret, every fun implicitly has a rec beneath it, which is why we can
create recursive functions with aplomb.

Exercise

Earlier we said that we can’t write

ones = link(1, ones)

What if we tried to write

rec ones = link(1, ones)

instead? Does this work and, if so, what value is ones bound to? If it doesn’t
work, does it fail to work for the same reason as the definition without the
rec?

Henceforth, we will use the shorthand [section 15.2] instead. Therefore, we
can rewrite the above definition as:

rec ones = lz-link(1, {(): ones})

Notice that {(): ...} defines an anonymous function of no arguments. You can’t
leave out the ()! If you do, Pyret will get confused about what your program
means.

Because functions are automatically recursive, when we write a function to
create a stream, we don’t need to use rec. Consider this example:

fun nats-from(n :: Number):

lz-link(n, {(): nats-from(n + 1)})

end

with which we can define the natural numbers:

nats = nats-from(0)

15.3. STREAMS FROM FUNCTIONS 223

Note that the definition of nats is not recursive itself—the recursion is inside
nats-from—so we don’t need to use rec to define nats.

Do Now!

Earlier, we said that every list is finite and hence eventually terminates. How
does this remark apply to streams, such as the definition of ones or nats
above?

The description of ones is still a finite one; it simply represents the potential
for an infinite number of values. Note that:

1. A similar reasoning doesn’t apply to lists because the rest of the list has
already been constructed; in contrast, placing a function there creates the
potential for a potentially unbounded amount of computation to still be forth-
coming.

2. That said, even with streams, in any given computation, we will create only
a finite prefix of the stream. However, we don’t have to prematurely decide
how many; each client and use is welcome to extract less or more, as needed.

Now we’ve created multiple streams, but we still don’t have an easy way to
“see” one. First we’ll define the traditional list-like selectors. Getting the first
element works exactly as with lists:

fun lz-first<T>(s :: Stream<T>) -> T: s.h end

In contrast, when trying to access the rest of the stream, all we get out of the data
structure is a thunk. To access the actual rest, we need to force the thunk, which of
course means applying it to no arguments:

fun lz-rest<T>(s :: Stream<T>) -> Stream<T>: s.t() end

This is useful for examining individual values of the stream. It is also useful
to extract a finite prefix of it (of a given size) as a (regular) list, which would be
especially handy for testing. Let’s write that function:

fun take<T>(n :: Number, s :: Stream<T>) -> List<T>:

if n == 0:

empty

else:

link(lz-first(s), take(n - 1, lz-rest(s)))

end

end

224 CHAPTER 15. FUNCTIONS AS DATA

If you pay close attention, you’ll find that this body is not defined by cases over the
structure of the (stream) input—instead, it’s defined by the cases of the definition
of a natural number (zero or a successor). We’ll return to this below (<lz-map2-
def>).

Now that we have this, we can use it for testing. Note that usually we use our
data to test our functions; here, we’re using this function to test our data:

check:

take(10, ones) is map(lam(_): 1 end, range(0, 10))

take(10, nats) is range(0, 10)

take(10, nats-from(1)) is map((_ + 1), range(0, 10))

end

The notation (_ + 1) defines a
Pyret function of one argument
that adds 1 to the given
argument.

Let’s define one more function: the equivalent of map over streams. For rea-
sons that will soon become obvious, we’ll define a version that takes two lists and
applies the first argument to them pointwise:
<lz-map2-def> ::=

fun lz-map2<A, B, C>(

f :: (A, B -> C),

s1 :: Stream<A>,

s2 :: Stream) -> Stream<C>:

lz-link(

f(lz-first(s1), lz-first(s2)),

{(): lz-map2(f, lz-rest(s1), lz-rest(s2))})

end

Now we can see our earlier remark about the structure of the function driven home
especially clearly. Whereas a traditional map over lists would have two cases, here
we have only one case because the data definition (<stream-type-def>) has only
one case! What is the consequence of this? In a traditional map, one case looks
like the above, but the other case corresponds to the empty input, for which it
produces the same output. Here, because the stream never terminates, mapping
over it doesn’t either, and the structure of the function reflects this.This raises a much subtler

problem: if the function’s body
doesn’t have base- and
inductive-cases, how can we
perform an inductive proof over
it? The short answer is we
can’t: we must instead useNcoinduction.

Why did we define lz-map2 instead of lz-map? Because it enables us to write
the following:

rec fibs =

lz-link(0,

{(): lz-link(1,

{(): lz-map2({(a :: Number, b :: Number): a + b},

fibs,

15.4. COMBINING FORCES: STREAMS OF DERIVATIVES 225

lz-rest(fibs))})})

from which, of course, we can extract as many Fibonacci numbers as we want!

check:

take(10, fibs) is [0, 1, 1, 2, 3, 5, 8, 13, 21, 34]

end

Exercise

Define the equivalent of map and filter for streams.

Streams and, more generally, infinite data structures that unfold on demand are
extremely valuable in programming. Consider, for instance, the possible moves
in a game. In some games, this can be infinite; even if it is finite, for interesting
games the combinatorics mean that the tree is too large to feasibly store in mem-
ory. Therefore, the programmer of the computer’s intelligence must unfold the
game tree on demand. Programming it by using the encoding we have described
above means the program describes the entire tree, lazily, and the tree unfolds au-
tomatically on demand, relieving the programmer of the burden of implementing
such a strategy.

In some languages, such as Haskell, lazy evaluation is built in by default. In
such a language, there is no need to use thunks. However, lazy evaluation places
other burdens on the language, which you can learn about in a programming-
languages class.

15.4 Combining Forces: Streams of Derivatives

When we defined d-dx, we set epsilon to an arbitrary, high value. We could
instead think of epsilon as itself a stream that produces successively finer values;
then, for instance, when the difference in the value of the derivative becomes small
enough, we can decide we have a sufficient approximation to the derivative.

The first step is, therefore, to make epsilon some kind of parameter rather than
a global constant. That leaves open what kind of parameter it should be (number
or stream?) as well as when it should be supplied.

It makes most sense to consume this parameter after we have decided what
function we want to differentiate and at what value we want its derivative; after all,
the stream of epsilon values may depend on both. Thus, we get:

fun d-dx(f :: (Number -> Number)) ->

(Number -> (Number -> Number)):

226 CHAPTER 15. FUNCTIONS AS DATA

lam(x :: Number) -> (Number -> Number):

lam(epsilon :: Number) -> Number:

(f(x + epsilon) - f(x)) / epsilon

end

end

end

with which we can return to our square example:

d-dx-square = d-dx(square)

Note that at this point we have simply redefined d-dx without any reference to
streams: we have merely made a constant into a parameter.

Now let’s define the stream of negative powers of ten:

tenths = block:

fun by-ten(d):

new-denom = d / 10

lz-link(new-denom, lam(): by-ten(new-denom) end)

end

by-ten(1)

end

so that

check:

take(3, tenths) is [list: 1/10, 1/100, 1/1000]

end

For concreteness, let’s pick an abscissa at which to compute the numeric derivative
of square—say 10:

d-dx-square-at-10 = d-dx-square(10)

Recall, from the types, that this is now a function of type (Number -> Number):
given a value for epsilon, it computes the derivative using that value. We know,
analytically, that the value of this derivative should be 20. We can now (lazily) map
tenths to provide increasingly better approximations for epsilon and see what
happens:

lz-map(d-dx-square-at-10, tenths)

Sure enough, the values we obtain are 20.1, 20.01, 20.001, and so on: progres-
sively better numerical approximations to 20.

15.4. COMBINING FORCES: STREAMS OF DERIVATIVES 227

Exercise

Extend the above program to take a tolerance, and draw as many values from
the epsilon stream as necessary until the difference between successive ap-
proximations of the derivative fall within this tolerance.

228 CHAPTER 15. FUNCTIONS AS DATA

Chapter 16

Interactive Games as Reactive
Systems

In this tutorial we’re going to write a little interactive game. The game won’t be
sophisticated, but it’ll have all the elements you need to build much richer games
of your own.

Albuquerque Balloon Fiesta

Imagine we have an airplane coming in to land. It’s unfortunately trying to do
so amidst a hot-air balloon festival, so it naturally wants to avoid colliding with any
(moving) balloons. In addition, there is both land and water, and the airplane needs

229

230 CHAPTER 16. INTERACTIVE GAMES AS REACTIVE SYSTEMS

to alight on land. We might also equip it with limited amounts of fuel to complete
its task. Here are some animations of the game:

• http://world.cs.brown.edu/1/projects/flight-lander/v9-success.swf

The airplane comes in to land succcessfully.

• http://world.cs.brown.edu/1/projects/flight-lander/v9-collide.swf

Uh oh—the airplane collides with a balloon!

• http://world.cs.brown.edu/1/projects/flight-lander/v9-sink.swf

Uh oh—the airplane lands in the water!

By the end, you will have written all the relevant portions of this program. Your
program will: animate the airplane to move autonomously; detect keystrokes and
adjust the airplane accordingly; have multiple moving balloons; detect collisions
between the airplane and balloons; check for landing on water and land; and ac-
count for the use of fuel. Phew: that’s a lot going on! Therefore, we won’t write it
all at once; instead, we’ll build it up bit-by-bit. But we’ll get there by the end.

16.1 About Reactive Animations

We are writing a program with two important interactive elements: it is an ani-
mation, meaning it gives the impression of motion, and it is reactive, meaning it
responds to user input. Both of these can be challenging to program, but Pyret pro-
vides a simple mechanism that accommodates both and integrates well with other
programming principles such as testing. We will learn about this as we go along.

The key to creating an animation is the Movie Principle. Even in the most
sophisticated movie you can watch, there is no motion (indeed, the very term
“movie”—short for “moving picture”—is a clever bit of false advertising). Rather,
there is just a sequence of still images shown in rapid succession, relying on the
human brain to create the impression of motion:

We are going to exploit the same idea: our animations will consist of a sequence
of individual images, and we will ask Pyret to show these in rapid succession. We
will then see how reactivity folds into the same process.

http://world.cs.brown.edu/1/projects/flight-lander/v9-success.swf
http://world.cs.brown.edu/1/projects/flight-lander/v9-collide.swf
http://world.cs.brown.edu/1/projects/flight-lander/v9-sink.swf

16.2. PRELIMINARIES 231

16.2 Preliminaries

To begin with, we should inform Pyret that we plan to make use of both images
and animations. We load the libraries as follows:

import image as I

import reactors as R

This tells Pyret to load these two libraries and bind the results to the corresponding
names, I and R. Thus, all image operations are obtained from I and animation
operations from R.

16.3 Version: Airplane Moving Across the Screen

We will start with the simplest version: one in which the airplane moves horizon-
tally across the screen. Watch this video:

http://world.cs.brown.edu/1/projects/flight-lander/v1.swf
First, here’s an image of an airplane: Have fun finding your preferred

airplane image! But don’t spend
too long on it, because we’ve
still got a lot of work to do.

http://world.cs.brown.edu/1/clipart/airplane-small.png
We can tell Pyret to load this image and give it a name as follows:

AIRPLANE-URL =

"http://world.cs.brown.edu/1/clipart/airplane-small.png"

AIRPLANE = I.image-url(AIRPLANE-URL)

Henceforth, when we refer to AIRPLANE, it will always refer to this image. (Try it
out in the interactions area!)

Now look at the video again. Watch what happens at different points in time.
What stays the same, and what changes? What’s common is the water and land,
which stay the same. What changes is the (horizontal) position of the airplane.

Note
Note

The World State consists of everything that changes. Things that stay the same
do not need to get recorded in the World State.

We can now define our first World State:
World Definition

World Definition
The World State is a number, representing the x-position of the airplane.
Observe something important above:
Note

Note

http://world.cs.brown.edu/1/projects/flight-lander/v1.swf
http://world.cs.brown.edu/1/clipart/airplane-small.png

232 CHAPTER 16. INTERACTIVE GAMES AS REACTIVE SYSTEMS

When we record a World State, we don’t capture only the type of the values,
but also their intended meaning.

Now we have a representation of the core data, but to generate the above ani-
mation, we still have to do several things:

1. Ask to be notified of the passage of time.

2. As time passes, correspondingly update the World State.

3. Given an updated World State, produce the corresponding visual display.

This sounds like a lot! Fortunately, Pyret makes this much easier than it sounds.
We’ll do these in a slightly different order than listed above.

Updating the World State

As we’ve noted, the airplane doesn’t actually “move”. Rather, we can ask Pyret
to notify us every time a clock ticks. If on each tick we place the airplane in an
appropriately different position, and the ticks happen often enough, we will get the
impression of motion.

Because the World State consists of just the airplane’s x-position, to move it
to the right, we simply increment its value. Let’s first give this constant distance a
name:

AIRPLANE-X-MOVE = 10

We will need to write a function that reflects this movement. Let’s first write some
test cases:

check:

move-airplane-x-on-tick(50) is 50 + AIRPLANE-X-MOVE

move-airplane-x-on-tick(0) is 0 + AIRPLANE-X-MOVE

move-airplane-x-on-tick(100) is 100 + AIRPLANE-X-MOVE

end

The function’s definition is now clear:

fun move-airplane-x-on-tick(w):

w + AIRPLANE-X-MOVE

end

And sure enough, Pyret will confirm that this function passes all of its tests.
Note

Note

16.3. VERSION: AIRPLANE MOVING ACROSS THE SCREEN 233

If you have prior experience programming animations and reactive programs,
you will immediately notice an important difference: it’s easy to test parts of your
program in Pyret!

Displaying the World State

Now we’re ready to draw the game’s visual output. We produce an image that
consists of all the necessary components. It first helps to define some constants
representing the visual output:

WIDTH = 800

HEIGHT = 500

BASE-HEIGHT = 50

WATER-WIDTH = 500

Using these, we can create a blank canvas, and overlay rectangles representing
water and land:

BLANK-SCENE = I.empty-scene(WIDTH, HEIGHT)

WATER = I.rectangle(WATER-WIDTH, BASE-HEIGHT, "solid", "blue")

LAND = I.rectangle(WIDTH - WATER-WIDTH, BASE-HEIGHT, "solid", "brown")

BASE = I.beside(WATER, LAND)

BACKGROUND =

I.place-image(BASE,

WIDTH / 2, HEIGHT - (BASE-HEIGHT / 2),

BLANK-SCENE)

Examine the value of BACKGROUND in the interactions area to confirm that it looks
right.

Do Now!

The reason we divide by two when placing BASE is because Pyret puts the
middle of the image at the given location. Remove the division and see what
happens to the resulting image.

Now that we know how to get our background, we’re ready to place the airplane
on it. The expression to do so looks roughly like this:

234 CHAPTER 16. INTERACTIVE GAMES AS REACTIVE SYSTEMS

I.place-image(AIRPLANE,

some x position,

50,

BACKGROUND)

but what x position do we use? Actually, that’s just what the World State repre-
sents! So we create a function out of this expression:

fun place-airplane-x(w):

I.place-image(AIRPLANE,

w,

50,

BACKGROUND)

end

Observing Time (and Combining the Pieces)

Finally, we’re ready to put these pieces together.
We create a special kind of Pyret value called a reactor, which creates anima-

tions. We’ll start by creating a fairly simple kind of reactor, then grow it as the
program gets more sophisticated.

The following code creates a reactor named anim:

anim = reactor:

init: 0,

on-tick: move-airplane-x-on-tick,

to-draw: place-airplane-x

end

A reactor needs to be given an initial World State as well as handlers that tell it how
to react. Specifying on-tick tells Pyret to run a clock and, every time the clock
ticks (roughly thirty times a second), invoke the associated handler. The to-draw

handler is used by Pyret to refresh the visual display.
Having defined this reactor, we can run it in several ways that are useful for

finding errors, running scientific experiments, and so on. Our needs here are sim-
ple; we ask Pyret to just run the program on the screen interactively:

R.interact(anim)

This creates a running program where the airplane flies across the background!
That’s it! We’ve created our first animation. Now that we’ve gotten all the

preliminaries out of the way, we can go about enhancing it.

16.4. VERSION: WRAPPING AROUND 235

Exercise

If you want the airplane to appear to move faster, what can you change?

16.4 Version: Wrapping Around

When you run the preceding program, you’ll notice that after a while, the airplane
just disappears. This is because it has gone past the right edge of the screen; it is
still being “drawn”, but in a location that you cannot see. That’s not very useful! Also, after a long while you

might get an error because the
computer is being asked to
draw the airplane at a location
beyond what the graphics
system can manage.

Instead, when the airplane is about to go past the right edge of the screen, we’d
like it to reappear on the left by a corresponding amount: “wrapping around”, as it
were.

Here’s the video for this version:
http://world.cs.brown.edu/1/projects/flight-lander/v2.swf
Let’s think about what we need to change. Clearly, we need to modify the func-

tion that updates the airplane’s location, since this must now reflect our decision to
wrap around. But the task of how to draw the airplane doesn’t need to change at
all! Similarly, the definition of the World State does not need to change, either.

Therefore, we only need to modify move-airplane-x-on-tick. The function
num-modulo does exactly what we need. That is, we want the x-location to always
be modulo the width of the scene:

fun move-airplane-wrapping-x-on-tick(x):

num-modulo(x + AIRPLANE-X-MOVE, WIDTH)

end

Notice that, instead of copying the content of the previous definition we can simply
reuse it:

fun move-airplane-wrapping-x-on-tick(x):

num-modulo(move-airplane-x-on-tick(x), WIDTH)

end

which makes our intent clearer: compute whatever position we would have had
before, but adapt the coordinate to remain within the scene’s width.

Well, that’s a proposed re-definition. Be sure to test this function thoroughly:
it’s tricker than you might think! Have you thought about all the cases? For in-
stance, what happens if the airplane is half-way off the right edge of the screen?

Exercise

Define quality tests for move-airplane-wrapping-x-on-tick.

http://world.cs.brown.edu/1/projects/flight-lander/v2.swf

236 CHAPTER 16. INTERACTIVE GAMES AS REACTIVE SYSTEMS

Note
Note

It is possible to leave move-airplane-x-on-tick unchanged and perform the
modular arithmetic in place-airplane-x instead. We choose not to do that for
the following reason. In this version, we really do think of the airplane as circling
around and starting again from the left edge (imagine the world is a cylinder...).
Thus, the airplane’s x-position really does keep going back down. If instead we
allowed the World State to increase monotonically, then it would really be repre-
senting the total distance traveled, contradicting our definition of the World State.

Do Now!

After adding this function, run your program again. Did you see any change
in behavior?

If you didn’t. . . did you remember to update your reactor to use the new airplane-
moving function?

16.5 Version: Descending

Of course, we need our airplane to move in more than just one dimension: to get
to the final game, it must both ascend and descend as well. For now, we’ll focus
on the simplest version of this, which is an airplane that continuously descends.
Here’s a video:

http://world.cs.brown.edu/1/projects/flight-lander/v3.swf
Let’s again consider individual frames of this video. What’s staying the same?

Once again, the water and the land. What’s changing? The position of the airplane.
But, whereas before the airplane moved only in the x-dimension, now it moves in
both x and y. That immediately tells us that our definition of the World State is
inadequate, and must be modified.

We therefore define a new structure to hold this pair of data:

data Posn:

| posn(x, y)

end

Given this, we can revise our definition:
World Definition

World Definition
The World State is a posn, representing the x-position and y-position of the

airplane on the screen.

http://world.cs.brown.edu/1/projects/flight-lander/v3.swf

16.5. VERSION: DESCENDING 237

Moving the Airplane

First, let’s consider move-airplane-wrapping-x-on-tick. Previously our air-
plane moved only in the x-direction; now we want it to descend as well, which
means we must add something to the current y value:

AIRPLANE-Y-MOVE = 3

Let’s write some test cases for the new function. Here’s one:

check:

move-airplane-xy-on-tick(posn(10, 10)) is posn(20, 13)

end

Another way to write the test would be:

check:

p = posn(10, 10)

move-airplane-xy-on-tick(p) is

posn(move-airplane-wrapping-x-on-tick(p.x),

move-airplane-y-on-tick(p.y))

end

Note
Note

Which method of writing tests is better? Both! They each offer different ad-
vantages:

• The former method has the benefit of being very concrete: there’s no ques-
tion what you expect, and it demonstrates that you really can compute the
desired answer from first principles.

• The latter method has the advantage that, if you change the constants in
your program (such as the rate of descent), seemingly correct tests do not
suddenly fail. That is, this form of testing is more about the relationships
between things rather than their precise values.

There is one more choice available, which often combines the best of both worlds:
write the answer as concretely as possible (the former style), but using constants to
compute the answer (the advantage of the latter style). For instance:

check:

p = posn(10, 10)

move-airplane-xy-on-tick(p) is

posn(num-modulo(p.x + AIRPLANE-X-MOVE, WIDTH),

238 CHAPTER 16. INTERACTIVE GAMES AS REACTIVE SYSTEMS

p.y + AIRPLANE-Y-MOVE)

end

Exercise

Before you proceed, have you written enough test cases? Are you sure? Have
you, for instance, tested what should happen when the airplane is near the
edge of the screen in either or both dimensions? We thought not—go back
and write more tests before you proceed!

Using the design recipe, now define move-airplane-xy-on-tick. You should
end up with something like this:

fun move-airplane-xy-on-tick(w):

posn(move-airplane-wrapping-x-on-tick(w.x),

move-airplane-y-on-tick(w.y))

end

Note that we have reused the existing function for the x-dimension and, corre-
spondingly, created a helper for the y dimension:

fun move-airplane-y-on-tick(y):

y + AIRPLANE-Y-MOVE

end

This may be slight overkill for now, but it does lead to a cleaner separation of
concerns, and makes it possible for the complexity of movement in each dimension
to evolve independently while keeping the code relatively readable.

Drawing the Scene

We have to also examine and update place-airplane-x. Our earlier defini-
tion placed the airplane at an arbitrary y-coordinate; now we have to take the y-
coordinate from the World State:

fun place-airplane-xy(w):

I.place-image(AIRPLANE,

w.x,

w.y,

BACKGROUND)

end

Notice that we can’t really reuse the previous definition because it hard-coded the
y-position, which we must now make a parameter.

16.6. VERSION: RESPONDING TO KEYSTROKES 239

Finishing Touches

Are we done? It would seem so: we’ve examined all the procedures that consume
and produce World State and updated them appropriately. Actually, we’re forget-
ting one small thing: the initial World State given to big-bang! If we’ve changed
the definition of World State, then we need to reconsider this parameter, too. (We
also need to pass the new handlers rather than the old ones.)

INIT-POS = posn(0, 0)

anim = reactor:

init: INIT-POS,

on-tick: move-airplane-xy-on-tick,

to-draw: place-airplane-xy

end

R.interact(anim)

Exercise

It’s a little unsatisfactory to have the airplane truncated by the screen. You
can use I.image-width and I.image-height to obtain the dimensions of
an image, such as the airplane. Use these to ensure the airplane fits entirely
within the screen for the initial scene, and similarly in move-airplane-xy-on-tick.

16.6 Version: Responding to Keystrokes

Now that we have the airplane descending, there’s no reason it can’t ascend as
well. Here’s a video:

http://world.cs.brown.edu/1/projects/flight-lander/v4.swf
We’ll use the keyboard to control its motion: specifically, the up-key will make

it move up, while the down-key will make it descend even faster. This is easy to
support using what we already know: we just need to provide one more handler
using on-key. This handler takes two arguments: the first is the current value of
the world, while the second is a representation of which key was pressed. For the
purposes of this program, the only key values we care about are "up" and "down".

This gives us a fairly comprehensive view of the core capabilities of reactors:

http://world.cs.brown.edu/1/projects/flight-lander/v4.swf

240 CHAPTER 16. INTERACTIVE GAMES AS REACTIVE SYSTEMS

We just define a group of functions to perform all our desired actions, and the
reactor strings them together. Some functions update world values (sometimes
taking additional information about a stimulus, such as the key pressed), while
others transform them into output (such as what we see on the screen).

Returning to our program, let’s define a constant representing how much dis-
tance a key represents:

KEY-DISTANCE = 10

Now we can define a function that alter’s the airplane’s position by that distance
depending on which key is pressed:

fun alter-airplane-y-on-key(w, key):

ask:

| key == "up" then: posn(w.x, w.y - KEY-DISTANCE)

| key == "down" then: posn(w.x, w.y + KEY-DISTANCE)

| otherwise: w

end

end

Do Now!

Why does this function definition contain

| otherwise: w

as its last condition?

Notice that if we receive any key other than the two we expect, we leave the
World State as it was; from the user’s perspective, this has the effect of just ignoring

16.7. VERSION: LANDING 241

the keystroke. Remove this last clause, press some other key, and watch what
happens!

No matter what you choose, be sure to test this! Can the airplane drift off the
top of the screen? How about off the screen at the bottom? Can it overlap with the
land or water?

Once we’ve written and thoroughly tested this function, we simply need to ask
Pyret to use it to handle keystrokes:

anim = reactor:

init: INIT-POS,

on-tick: move-airplane-xy-on-tick,

on-key: alter-airplane-y-on-key,

to-draw: place-airplane-xy

end

Now your airplane moves not only with the passage of time but also in response to
your keystrokes. You can keep it up in the air forever!

16.7 Version: Landing

Remember that the objective of our game is to land the airplane, not to keep it
airborne indefinitely. That means we need to detect when the airplane reaches the
land or water level and, when it does, terminate the animation:

http://world.cs.brown.edu/1/projects/flight-lander/v5.swf
First, let’s try to characterize when the animation should halt. This means

writing a function that consumes the current World State and produces a boolean
value: true if the animation should halt, false otherwise. This requires a little
arithmetic based on the airplane’s size:

fun is-on-land-or-water(w):

w.y >= (HEIGHT - BASE-HEIGHT)

end

We just need to inform Pyret to use this predicate to automatically halt the reactor:

anim = reactor:

init: INIT-POS,

on-tick: move-airplane-xy-on-tick,

on-key: alter-airplane-y-on-key,

to-draw: place-airplane-xy,

stop-when: is-on-land-or-water

end

http://world.cs.brown.edu/1/projects/flight-lander/v5.swf

242 CHAPTER 16. INTERACTIVE GAMES AS REACTIVE SYSTEMS

Exercise

When you test this, you’ll see it isn’t quite right because it doesn’t take ac-
count of the size of the airplane’s image. As a result, the airplane only halts
when it’s half-way into the land or water, not when it first touches down.
Adjust the formula so that it halts upon first contact.

Exercise

Extend this so that the airplane rolls for a while upon touching land, deceler-
ating according to the laws of physics.

Exercise

Suppose the airplane is actually landing at a secret subterranean airbase. The
actual landing strip is actually below ground level, and opens up only when
the airplane comes in to land. That means, after landing, only the parts of the
airplane that stick above ground level would be visible. Implement this. As
a hint, consider modifying place-airplane-xy.

16.8 Version: A Fixed Balloon

Now let’s add a balloon to the scene. Here’s a video of the action:
http://world.cs.brown.edu/1/projects/flight-lander/v6.swf
Notice that while the airplane moves, everything else—including the balloon—

stays immobile. Therefore, we do not need to alter the World State to record the
balloon’s position. All we need to do is alter the conditions under which the pro-
gram halts: effectively, there is one more situation under which it terminates, and
that is a collision with the balloon.

When does the game halt? There are now two circumstances: one is contact
with land or water, and the other is contact with the balloon. The former remains
unchanged from what it was before, so we can focus on the latter.

Where is the balloon, and how do we represent where it is? The latter is easy
to answer: that’s what posns are good for. As for the former, we can decide where
it is:

BALLOON-LOC = posn(600, 300)

or we can let Pyret pick a random position:

BALLOON-LOC = posn(random(WIDTH), random(HEIGHT))

http://world.cs.brown.edu/1/projects/flight-lander/v6.swf

16.8. VERSION: A FIXED BALLOON 243

Exercise

Improve the random placement of the balloon so that it is in credible spaces
(e.g., not submerged).

Given a position for the balloon, we just need to detect collision. One simple
way is as follows: determine whether the distance between the airplane and the
balloon is within some threshold:

fun are-overlapping(airplane-posn, balloon-posn):

distance(airplane-posn, balloon-posn)

< COLLISION-THRESHOLD

end

where COLLISION-THRESHOLD is some suitable constant computed based on the
sizes of the airplane and balloon images. (For these particular images, 75 works
pretty well.)

What is distance? It consumes two posns and determines the Euclidean dis-
tance between them:

fun distance(p1, p2):

fun square(n): n * n end

num-sqrt(square(p1.x - p2.x) + square(p1.y - p2.y))

end

Finally, we have to weave together the two termination conditions:

fun game-ends(w):

ask:

| is-on-land-or-water(w) then: true

| are-overlapping(w, BALLOON-LOC) then: true

| otherwise: false

end

end

and use it instead:

anim = reactor:

init: INIT-POS,

on-tick: move-airplane-xy-on-tick,

on-key: alter-airplane-y-on-key,

to-draw: place-airplane-xy,

stop-when: game-ends

end

244 CHAPTER 16. INTERACTIVE GAMES AS REACTIVE SYSTEMS

Do Now!

Were you surprised by anything? Did the game look as you expected?

Odds are you didn’t see a balloon on the screen! That’s because we didn’t update
our display.

You will need to define the balloon’s image:

BALLOON-URL =

"http://world.cs.brown.edu/1/clipart/balloon-small.png"

BALLOON = I.image-url(BALLOON-URL)

and also update the drawing function:

BACKGROUND =

I.place-image(BASE,

WIDTH / 2, HEIGHT - (BASE-HEIGHT / 2),

I.place-image(BALLOON,

BALLOON-LOC.x, BALLOON-LOC.y,

BLANK-SCENE))

Do Now!

Do you see how to write game-ends more concisely?

Here’s another version:

fun game-ends(w):

is-on-land-or-water(w) or are-overlapping(w, BALLOON-LOC)

end

16.9 Version: Keep Your Eye on the Tank

Now we’ll introduce the idea of fuel. In our simplified world, fuel isn’t necessary to
descend—gravity does that automatically—but it is needed to climb. We’ll assume
that fuel is counted in whole number units, and every ascension consumes one unit
of fuel. When you run out of fuel, the program no longer responds to the up-arrow,
so you can no longer avoid either the balloon or water.

In the past, we’ve looked at still images of the game video to determine what
is changing and what isn’t. For this version, we could easily place a little gauge
on the screen to show the quantity of fuel left. However, we don’t on purpose, to
illustrate a principle.

16.9. VERSION: KEEP YOUR EYE ON THE TANK 245

Note
Note

You can’t always determine what is fixed and what is changing just by looking
at the image. You have to also read the problem statement carefully, and think
about it in depth.

It’s clear from our description that there are two things changing: the position
of the airplane and the quantity of fuel left. Therefore, the World State must capture
the current values of both of these. The fuel is best represented as a single number.
However, we do need to create a new structure to represent the combination of
these two.

World Definition
World Definition

The World State is a structure representing the airplane’s current position and
the quantity of fuel left.

Concretely, we will use this structure:

data World:

| world(p, f)

end

Exercise

We could have also defined the World to be a structure consisting of three
components: the airplane’s x-position, the airplane’s y-position, and the quan-
tity of fuel. Why do we choose to use the representation above?

We can again look at each of the parts of the program to determine what can
stay the same and what changes. Concretely, we must focus on the functions that
consume and produce Worlds.

On each tick, we consume a world and compute one. The passage of time does
not consume any fuel, so this code can remain unchanged, other than having to
create a structure containing the current amount of fuel. Concretely:

fun move-airplane-xy-on-tick(w :: World):

world(

posn(

move-airplane-wrapping-x-on-tick(w.p.x),

move-airplane-y-on-tick(w.p.y)),

w.f)

end

Similarly, the function that responds to keystrokes clearly needs to take into ac-
count how much fuel is left:

246 CHAPTER 16. INTERACTIVE GAMES AS REACTIVE SYSTEMS

fun alter-airplane-y-on-key(w, key):

ask:

| key == "up" then:

if w.f > 0:

world(posn(w.p.x, w.p.y - KEY-DISTANCE), w.f - 1)

else:

w # there’s no fuel, so ignore the keystroke

end

| key == "down" then:

world(posn(w.p.x, w.p.y + KEY-DISTANCE), w.f)

| otherwise: w

end

end

Exercise

Updating the function that renders a scene. Recall that the world has two
fields; one of them corresponds to what we used to draw before, and the
other isn’t being drawn in the output.

Do Now!

What else do you need to change to get a working program?

You should have noticed that your initial world value is also incorrect because
it doesn’t account for fuel. What are interesting fuel values to try?

Exercise

Extend your program to draw a fuel gauge.

16.10 Version: The Balloon Moves, Too

Until now we’ve left our balloon immobile. Let’s now make the game more inter-
esting by letting the balloon move, as this video shows:

http://world.cs.brown.edu/1/projects/flight-lander/v8.swf
Obviously, the balloon’s location needs to also become part of the World State.
World Definition

World Definition

http://world.cs.brown.edu/1/projects/flight-lander/v8.swf

16.11. VERSION: ONE, TWO, ..., NINETY-NINE LUFTBALLONS! 247

The World State is a structure representing the plane’s current position, the
balloon’s current position, and the quantity of fuel left.

Here is a representation of the world state. As these states become more com-
plex, it’s important to add annotations so we can keep track of what’s what.

data World:

| world(p :: Posn, b :: Posn, f :: Number)

end

With this definition, we obviously need to re-write all our previous definitions.
Most of this is quite routine relative to what we’ve seen before. The only detail we
haven’t really specified is how the balloon is supposed to move: in what direction,
at what speed, and what to do at the edges. We’ll let you use your imagination for
this one! (Remember that the closer the balloon is to land, the harder it is to safely
land the plane.)

We thus have to modify:

• The background image (to remove the static balloon).

• The drawing handler (to draw the balloon at its position).

• The timer handler (to move the balloon as well as the airplane).

• The key handler (to construct world data that leaves the balloon unchanged).

• The termination condition (to account for the balloon’s dynamic location).

Exercise

Modify each of the above functions, along with their test cases.

16.11 Version: One, Two, ..., Ninety-Nine Luftballons!

Finally, there’s no need to limit ourselves to only one balloon. How many is right?
Two? Three? Ten? ... Why fix any one number? It could be a balloon festival!

Similarly, many games have levels that become progressively harder; we could
do the same, letting the number of balloons be part of what changes across levels.
However, there is conceptually no big difference between having two balloons and
five; the code to control each balloon is essentially the same.

We need to represent a collection of balloons. We can use a list to represent
them. Thus:

World Definition

248 CHAPTER 16. INTERACTIVE GAMES AS REACTIVE SYSTEMS

World Definition
The World State is a structure representing the plane’s current position, a list

of balloon positions, and the quantity of fuel left.
You should now use the design recipe for lists of structures to rewrite the func-

tions. Notice that you’ve already written the function to move one balloon. What’s
left?

1. Apply the same function to each balloon in the list.

2. Determine what to do if two balloons collide.

For now, you can avoid the latter problem by placing each balloon sufficiently
spread apart along the x-dimension and letting them move only up and down.

Exercise

Introduce a concept of wind, which affects balloons but not the airplane. Af-
ter random periods of time, the wind blows with random speed and direction,
causing the ballooons to move laterally.

Chapter 17

Examples, Testing, and Program
Checking

Back in section 5.4, we began to develop your habit of writing concrete examples of
functions. In section 8.2, we showed you how to develop examples of intermediate
values to help you plan the code for you to write. As these examples show, there
are many ways to write down examples. We could write them on a board, on paper,
or even as comments in a computer document. These are all reasonable and indeed,
often, the best way to begin working on a problem. However, if we can write our
examples in a precise form that a computer can understand, we achieve two things:

• When we’re done writing our purported solution, we can have the computer
check whether we got it right.

• In the process of writing down our expectation, we often find it hard to ex-
press with the precision that a computer expects. Sometimes this is because
we’re still formulating the details and haven’t yet pinned them down, but
at other times it’s because we don’t yet understand the problem. In such
situations, the force of precision actually does us good, because it helps us
understand the weakness of our understanding.

17.1 From Examples to Tests

Until now, we have written examples in where: blocks for two purposes: to help
us figure out what a function needs to do, and to provide guidance to someone
reading our code as to what behavior they can expect when using our function.
For the smaller programs that we have written until now, where-based examples
have been sufficient. As our programs get more complicated, however, a small set

249

250 CHAPTER 17. EXAMPLES, TESTING, AND PROGRAM CHECKING

of related illustrative examples won’t suffice. We need to think about being much
more thorough in the sets of inputs that we consider.

Consider for example a function count-uses that counts how many times a
specific string appears in a list (this could be used to tally votes, to compute the
frequency of using a discount code, and so on). What input scenarios might we
need to check before using our function to run an actual election or a business?

• The result for a string that is in the list once

• The result for a string that is in the list multiple times

• The result for a string that is at the end of a longer list (to make sure we are
checking all of the elements)

• The result for a string that isn’t in the list

• The result for a string that is in the list but with different capitalization

• The result for a string that is a typo-away from a word in the list

Notice that here we are considering many more situations, including fairly nu-
anced ones that affect how robust our code would be under realistic situations.
Once we start considering situations like these, we are shifting from examples to
illustrate our code to tests to thoroughly test our code.

In Pyret, we use where blocks inside function definitions for examples. We use
a check block outside the function definition for tests. For example:

fun count-uses(of-string :: String, in-list :: List<String>) -> Number:

...

where:

count-uses("pepper", [list:]) is 0

count-uses("pepper", [list: "onion"]) is 0

count-uses("pepper", [list: "pepper", "onion"]) is 1

count-uses("pepper", [list: "pepper", "pepper", "onion"]) is 2

end

check:

count-uses("ppper", [list: "pepper"]) is 0

count-uses("ONION", [list: "pepper", "onion"]) is 1

count-uses("tomato",

[list: "pepper", "onion", "onion", "pepper", "tomato",

"tomato", "onion", "tomato"])

17.1. FROM EXAMPLES TO TESTS 251

is 3

...

end

As a guiding rule, we put illustrative cases that would help someone else read-
ing our code into the where block, while we put the nitty-gritty checks that our
code handles the wider range of usage scenarios (including error cases) into the
check. Sometimes, the line between these two isn’t clear: for example, one could
easily argue that the second test (the function handles different capitalization) be-
longs in where instead. The third test about using a really long list would remain
in check, however, as longer inputs are generally not instructive to a reader of your
code.

Putting tests in a block that lives outside the function has another advantage at
the level of professional programming: it allows your tests to live in a separate file
from your code. This has two key benefits. First, it makes it easier for someone to
read the essential parts of your code (if they are building on your work). Second,
it makes it easier to control when tests are run. When your check blocks are in the
same file as your code, all the tests will be checked when you run your code. When
they are in a different file, an organization can choose when to run the tests. During
development, tests are run frequently to make sure no errors have been introduced.
Once code is tested and ready to be deployed or used, tests are not run along with
the program (unless there has been a modification or someone has discovered an
error with the code). This is standard practice in software projects.

It is also worth noting that the collection of tests grows throughout the devel-
opment process, moreso than do the collection of examples. As you are developing
code, every time you find a bug in your code, add a test for it in your check block so
you don’t accidentally introduce that same error again later. Whereas we develop
examples up front as we figure out what we want our program to do, we augment
our tests as we discover what our program actually does (and perhaps should not
do). In practice, developers write an initial set of checks on the scenarios they
thought of before and while writing the code, then expand those tests as they try
out more scenarios and gain users who report scenarios where the code does not
work.

Nearly all programming languages come with some constructs or packages
in which you can write tests in separate files. Pyret is unique in supporting the
distinction between examples and tests (both for learning and for readability of
code by others). Many programming tools that support professionals expect you to
put all tests in separate folders and files (offering no support for examples). In this
book, we emphasize the difference between these two uses of input-output pairs
in programming because we find them extremely useful both professionally and

252 CHAPTER 17. EXAMPLES, TESTING, AND PROGRAM CHECKING

pedagogically.

17.2 More Refined Comparisons

Sometimes, a direct comparison via is isn’t enough for testing. We have al-
ready seen this in the case of raises tests (section 14.1.1). As another exam-
ple, when doing some computations, especially involving math with approxima-
tions, the exact match of is isn’t feasible. For example, consider these tests for
distance-to-origin:

check:

distance-to-origin(point(1, 1)) is ???

end

What can we check here? Typing this into the REPL, we can find that the an-
swer prints as 1.4142135623730951. That’s an approximation of the real answer,
which Pyret cannot represent exactly. But it’s hard to know that this precise an-
swer, to this decimal place, and no more, is the one we should expect up front, and
thinking through the answers is supposed to be the first thing we do!

Since we know we’re getting an approximation, we can really only check that
the answer is roughly correct, not exactly correct. If we can check that the answer to
distance-to-origin(point(1, 1)) is around, say, 1.41, and can do the same
for some similar cases, that’s probably good enough for many applications, and
for our purposes here. If we were calculating orbital dynamics, we might demand
higher precision, but note that we’d still need to pick a cutoff! Testing for inexact
results is a necessary task.

Let’s first define what we mean by “around” with one of the most precise ways
we can, a function:

fun around(actual :: Number, expected :: Number) -> Boolean:

doc: "Return whether actual is within 0.01 of expected"

num-abs(actual - expected) < 0.01

where:

around(5, 5.01) is true

around(5.01, 5) is true

around(5.02, 5) is false

around(num-sqrt(2), 1.41) is true

end

The is form now helps us out. There is special syntax for supplying a user-
defined function to use to compare the two values, instead of just checking if they
are equal:

17.3. WHEN TESTS FAIL 253

check:

5 is%(around) 5.01

num-sqrt(2) is%(around) 1.41

distance-to-origin(point(1, 1)) is%(around) 1.41

end

Adding %(something) after is changes the behavior of is. Normally, it would
compare the left and right values for equality. If something is provided with %,
however, it instead passes the left and right values to the provided function (in this
example around). If the provided function produces true, the test passes, if it
produces false, the test fails. This gives us the control we need to test functions
with predictable approximate results.

Exercise

Extend the definition of distance-to-origin to include polar points.

Exercise

(This might save you a Google search: polar conversions.) Use the design
recipe to write x-component and y-component, which return the x and y

Cartesian parts of the point (which you would need, for example, if you were
plotting them on a graph). Read about num-sin and other functions you’ll
need at the Pyret number documentation.

Exercise

Write a data definition called Pay for pay types that includes both hourly
employees, whose pay type includes an hourly rate, and salaried employees,
whose pay type includes a total salary for the year. Use the design recipe
to write a function called expected-weekly-wages that takes a Pay, and
returns the expected weekly salary: the expected weekly salary for an hourly
employee assumes they work 40 hours, and the expected weekly salary for a
salaried employee is 1/52 of their salary.

17.3 When Tests Fail

Suppose we’ve written the function sqrt, which computes the square root of a
given number. We’ve written some tests for this function. We run the program,
and find that a test fails. There are two obvious reasons why this can happen.

http://en.wikipedia.org/wiki/Polar_coordinate_system#Converting_between_polar_and_Cartesian_coordinates
http://www.pyret.org/docs/latest/numbers.html

254 CHAPTER 17. EXAMPLES, TESTING, AND PROGRAM CHECKING

Do Now!

What are the two obvious reasons?

The two reasons are, of course, the two “sides” of the test: the problem could
be with the values we’ve written or with the function we’ve written. For instance,
if we’ve written

sqrt(4) is 1.75

then the fault clearly lies with the values (because 1.752 is clearly not 4). On the
other hand, if it fails the test

sqrt(4) is 2

then the odds are that we’ve made an error in the definition of sqrt instead, and
that’s what we need to fix.

Note that there is no way for the computer to tell what went wrong. When it
reports a test failure, all it’s saying is that there is an inconsistency between the
program and the tests. The computer is not passing judgment on which one is
“correct”, because it can’t do that. That is a matter for human judgment.For this reason, we’ve been

doing research on peer review
of tests, so students can help
one another review their tests
before they begin writing
programs.

Actually...not so fast. There’s one more possibility we didn’t consider: the
third, not-so-obvious reason why a test might fail. Return to this test:

sqrt(4) is 2

Clearly the inputs and outputs are correct, but it could be that the definition of sqrt
is also correct, and yet the test fails.

Do Now!

Do you see why?

Depending on how we’ve programmed sqrt, it might return the root -2 instead
of 2. Now -2 is a perfectly good answer, too. That is, neither the function nor
the particular set of test values we specified is inherently wrong; it’s just that the
function happens to be a relation, i.e., it maps one input to multiple outputs (that
is,
√

4 = ±2). The question now is how to write the test properly.

17.4 Oracles for Testing

In other words, sometimes what we want to express is not a concrete input-output
pair, but rather check that the output has the right relationship to the input. Con-
cretely, what might this be in the case of sqrt? We hinted at this earlier when we

http://cs.brown.edu/~sk/Publications/Papers/Published/pkf-ifpr-tests-tf-prog/
http://cs.brown.edu/~sk/Publications/Papers/Published/pkf-ifpr-tests-tf-prog/

17.4. ORACLES FOR TESTING 255

said that 1.75 clearly can’t be right, because squaring it does not yield 4. That
gives us the general insight: that a number is a valid root (note the use of “a” in-
stead of “the”) if squaring it yields the original number. That is, we might write a
function like this:

fun is-sqrt(n):

n-root = sqrt(n)

n == (n-root * n-root)

end

and then our test looks like

check:

is-sqrt(4) is true

end

Unfortunately, this has an awkward failure case. If sqrt does not produce a number
that is in fact a root, we aren’t told what the actual value is; instead, is-sqrt
returns false, and the test failure just says that false (what is-sqrt returns) is not
true (what the test expects)—which is both absolutely true and utterly useless.

Fortunately, Pyret has a better way of expressing the same check. Instead of is,
we can write satisfies, and then the value on the left must satisfy the predicate
on the right. Concretely, this looks like:

fun check-sqrt(n):

lam(n-root):

n == (n-root * n-root)

end

end

which lets us write:

check:

sqrt(4) satisfies check-sqrt(4)

end

Now, if there’s a failure, we learn of the actual value produced by sqrt(4) that
failed to satisfy the predicate.

256 CHAPTER 17. EXAMPLES, TESTING, AND PROGRAM CHECKING

Part III

Algorithms

257

Chapter 18

Predicting Growth

We will now commence the study of determining how long a computation takes.
We’ll begin with a little (true) story.

18.1 A Little (True) Story

My student Debbie recently wrote tools to analyze data for a startup. The company
collects information about product scans made on mobile phones, and Debbie’s
analytic tools classified these by product, by region, by time, and so on. As a good
programmer, Debbie first wrote synthetic test cases, then developed her programs
and tested them. She then obtained some actual test data from the company, broke
them down into small chunks, computed the expected answers by hand, and tested
her programs again against these real (but small) data sets. At the end of this she
was ready to declare the programs ready.

At this point, however, she had only tested them for functional correctness.
There was still a question of how quickly her analytical tools would produce an-
swers. This presented two problems:

• The company was rightly reluctant to share the entire dataset with outsiders,
and in turn we didn’t want to be responsible for carefully guarding all their
data.

• Even if we did get a sample of their data, as more users used their product,
the amount of data they had was sure to grow.

We therefore got only a sampling of their full data, and from this had to make
some prediction on how long it would take to run the analytics on subsets (e.g.,
those corresponding to just one region) or all of their data set, both today and as it
grew over time.

259

260 CHAPTER 18. PREDICTING GROWTH

Debbie was given 100,000 data points. She broke them down into input sets of
10, 100, 1,000, 10,000, and 100,000 data points, ran her tools on each input size,
and plotted the result.

From this graph we have a good bet at guessing how long the tool would take
on a dataset of 50,000. It’s much harder, however, to be sure how long it would take
on datasets of size 1.5 million or 3 million or 10 million. We’ve already explainedThese processes are

respectively called interpolation
and extrapolation.

why we couldn’t get more data from the company. So what could we do?

As another problem, suppose we have multiple implementations available. When
we plot their running time, say the graphs look like this, with red, green, and blue
each representing different implementations. On small inputs, suppose the running
times look like this:

18.1. A LITTLE (TRUE) STORY 261

262 CHAPTER 18. PREDICTING GROWTH

This doesn’t seem to help us distinguish between the implementations. Now
suppose we run the algorithms on larger inputs, and we get the following graphs:

18.1. A LITTLE (TRUE) STORY 263

264 CHAPTER 18. PREDICTING GROWTH

Now we seem to have a clear winner (red), though it’s not clear there is much
to give between the other two (blue and green). But if we calculate on even larger
inputs, we start to see dramatic differences:

18.1. A LITTLE (TRUE) STORY 265

266 CHAPTER 18. PREDICTING GROWTH

In fact, the functions that resulted in these lines were the same in all three
figures. What these pictures tell us is that it is dangerous to extrapolate too much
from the performance on small inputs. If we could obtain closed-form descriptions
of the performance of computations, it would be nice if we could compare them
better. That is what we will do in the next section.

Responsible Computing: Choose Analysis Artifacts Wisely

As more and more decisions are guided by statistical analyses of data (per-
formed by humans), it’s critical to recognize that data can be a poor proxy for
the actual phenomenon that we seek to understand. Here, Debbie had data
about program behavior, which led to mis-interpretations regarding which
program is best. But Debbie also had the programs themselves, from which
the data were generated. Analyzing the programs, rather than the data, is a
more direct approach to assessing the performance of a program.

While the rest of this chapter is about analyzing programs as written
in code, this point carries over to non-programs as well. You might want to
understand the effectiveness of a process for triaging patients at a hospital, for
example. In that case, you have both the policy documents (rules which may
or may not have been turned into a software program to support managing
patients) and data on the effectiveness of using that process. Responsible
computing tells us to analyze both the process and its behavioral data, against
knowledge about best practices in patient care, to evaluate the effectiveness
of systems.

18.2 The Analytical Idea

With many physical processes, the best we can do is obtain as many data points as
possible, extrapolate, and apply statistics to reason about the most likely outcome.
Sometimes we can do that in computer science, too, but fortunately we computer
scientists have an enormous advantage over most other sciences: instead of mea-
suring a black-box process, we have full access to its internals, namely the source
code. This enables us to apply analytical methods. The answer we compute this“Analytical” means applying

algebraic and other
mathematical methods to make
predictive statements about a
process without running it.

way is complementary to what we obtain from the above experimental analysis,
and in practice we will usually want to use a combination of the two to arrive a
strong understanding of the program’s behavior.

The analytical idea is startlingly simple. We look at the source of the program
and list the operations it performs. For each operation, we look up what it costs.We are going to focus on one

kind of cost, namely running
time. There are many other
other kinds of costs one can
compute. We might naturally be
interested in space (memory)
consumed, which tells us how
big a machine we need to buy.
We might also care about
power, this tells us the cost of
our energy bills, or of
bandwidth, which tells us what
kind of Internet connection we
will need. In general, then,
we’re interested in resource
consumption. In short, don’t
make the mistake of equating
“performance” with “speed”:
the costs that matter depend on
the context in which the
application runs.

We add up these costs for all the operations. This gives us a total cost for the
program.

18.3. A COST MODEL FOR PYRET RUNNING TIME 267

Naturally, for most programs the answer will not be a constant number. Rather,
it will depend on factors such as the size of the input. Therefore, our answer is
likely to be an expression in terms of parameters (such as the input’s size). In other
words, our answer will be a function.

There are many functions that can describe the running-time of a function.
Often we want an upper bound on the running time: i.e., the actual number of
operations will always be no more than what the function predicts. This tells us
the maximum resource we will need to allocate. Another function may present a
lower bound, which tells us the least resource we need. Sometimes we want an
average-case analysis. And so on. In this text we will focus on upper-bounds, but
keep in mind that all these other analyses are also extremely valuable.

Exercise

It is incorrect to speak of “the” upper-bound function, because there isn’t just
one. Given one upper-bound function, can you construct another one?

18.3 A Cost Model for Pyret Running Time

We begin by presenting a cost model for the running time of Pyret programs. We
are interested in the cost of running a program, which is tantamount to studying the
expressions of a program. Simply making a definition does not cost anything; the
cost is incurred only when we use a definition.

We will use a very simple (but sufficiently accurate) cost model: every op-
eration costs one unit of time in addition to the time needed to evaluate its sub-
expressions. Thus it takes one unit of time to look up a variable or to allocate a
constant. Applying primitive functions also costs one unit of time. Everything else
is a compound expression with sub-expressions. The cost of a compound expres-
sion is one plus that of each of its sub-expressions. For instance, the running time
cost of the expression e1 + e2 (for some sub-expressions e1 and e2) is the run-
ning time for e1 + the running time for e2 + 1. Thus the expression 17 + 29 has
a cost of 3 (one for each sub-expression and one for the addition); the expression
1 + (7 * (2 / 9)) costs 7.

As you can see, there are two big approximations here:

• First, we are using an abstract rather than concrete notion of time. This is
unhelpful in terms of estimating the so-called “wall clock” running time of a
program, but then again, that number depends on numerous factors—not just
what kind of processor and how much memory you have, but even what other
tasks are running on your computer at the same time. In contrast, abstract
time units are more portable.

268 CHAPTER 18. PREDICTING GROWTH

• Second, not every operation takes the same number of machine cycles, whereas
we have charged all of them the same number of abstract time units. As long
as the actual number of cycles each one takes is bounded by a constant factor
of the number taken by another, this will not pose any mathematical prob-
lems for reasons we will soon understand [section 18.8].

Of course, it is instructive—after carefully settting up the experimental conditions—
to make an analytical prediction of a program’s behavior and then verify it against
what the implementation actually does. If the analytical prediction is accurate, we
can reconstruct the constant factors hidden in our calculations and thus obtain very
precise wall-clock time bounds for the program.

There is one especially tricky kind of expression: if (and its fancier cousins,
like cases and ask). How do we think about the cost of an if? It always evaluates
the condition. After that, it evaluates only one of its branches. But we are interested
in the worst case time, i.e., what is the longest it could take? For a conditional, it’s
the cost of the condition added to the cost of the maximum of the two branches.

18.4 The Size of the Input
We gloss over the size of a
number, treating it as constant.
Observe that the value of a
number is exponentially larger
than its size: = digits in base 1
can represent 1= numbers.
Though irrelevant here, when
numbers are central—e.g.,
when testing primality—the
difference becomes critical! We
will return to this briefly later
[section 28.3.1.3].

It can be subtle to define the size of the argument. Suppose a function consumes
a list of numbers; it would be natural to define the size of its argument to be the
length of the list, i.e., the number of links in the list. We could also define it to
be twice as large, to account for both the links and the individual numbers (but as
we’ll see [section 18.8], constants usually don’t matter). But suppose a function
consumes a list of music albums, and each music album is itself a list of songs, each
of which has information about singers and so on. Then how we measure the size
depends on what part of the input the function being analyzed actually examines.
If, say, it only returns the length of the list of albums, then it is indifferent to what
each list element contains [section 10.10], and only the length of the list of albums
matters. If, however, the function returns a list of all the singers on every album,
then it traverses all the way down to individual songs, and we have to account for
all these data. In short, we care about the size of the data potentially accessed by
the function.

18.5 The Tabular Method for Singly-Structurally-Recursive
Functions

Given sizes for the arguments, we simply examine the body of the function and add
up the costs of the individual operations. Most interesting functions are, however,

18.5. THE TABULAR METHOD FOR SINGLY-STRUCTURALLY-RECURSIVE FUNCTIONS269

conditionally defined, and may even recur. Here we will assume there is only one
structural recursive call. We will get to more general cases in a bit [section 18.6].

When we have a function with only one recursive call, and it’s structural,
there’s a handy technique we can use to handle conditionals. We will set up a This idea is due to Prabhakar

Ragde.table. It won’t surprise you to hear that the table will have as many rows as the
cond has clauses. But instead of two columns, it has seven! This sounds daunting,
but you’ll soon see where they come from and why they’re there.

For each row, fill in the columns as follows:

1. |Q|: the number of operations in the question

2. #Q: the number of times the question will execute

3. TotQ: the total cost of the question (multiply the previous two)

4. |A|: the number of operations in the answer

5. #A: the number of times the answer will execute

6. TotA: the total cost of the answer (multiply the previous two)

7. Total: add the two totals to obtain an answer for the clause

Finally, the total cost of the cond expression is obtained by summing the Total
column in the individual rows.

In the process of computing these costs, we may come across recursive calls
in an answer expression. So long as there is only one recursive call in the entire
answer, ignore it.

Exercise

Once you’ve read the material on section 18.6, come back to this and justify
why it is okay to just skip the recursive call. Explain in the context of the
overall tabular method.

Exercise

Excluding the treatment of recursion, justify (a) that these columns are indi-
vidually accurate (e.g., the use of additions and multiplications is appropri-
ate), and (b) sufficient (i.e., combined, they account for all operations that
will be performed by that cond clause).

It’s easiest to understand this by applying it to a few examples. First, let’s
consider the len function, noting before we proceed that it does meet the criterion
of having a single recursive call where the argument is structural:

270 CHAPTER 18. PREDICTING GROWTH

fun len(l):

cases (List) l:

| empty => 0

| link(f, r) => 1 + len(r)

end

end

Let’s compute the cost of running len on a list of length : (where we are only
counting the number of links in the list, and ignoring the content of each first
element (f), since len ignores them too).

Because the entire body of len is given by a conditional, we can proceed di-
rectly to building the table.

Let’s consider the first row. The question costs three units (one each to evaluate
the implicit empty-ness predicate, l, and to apply the former to the latter). This is
evaluated once per element in the list and once more when the list is empty, i.e.,
: + 1 times. The total cost of the question is thus 3(: + 1). The answer takes one
unit of time to compute, and is evaluated only once (when the list is empty). Thus
it takes a total of one unit, for a total of 3: + 4 units.

Now for the second row. The question again costs three units, and is evaluated
: times. The answer involves two units to evaluate the rest of the list l.rest,
which is implicitly hidden by the naming of r, two more to evaluate and apply
1 +, one more to evaluate len...and no more, because we are ignoring the time
spent in the recursive call itself. In short, it takes five units of time (in addition to
the recursion we’ve chosen to ignore).

In tabular form:
|Q| #Q TotQ |A| #A TotA Total
3 : + 1 3(: + 1) 1 1 1 3: + 4
3 : 3: 5 : 5: 8:
Adding, we get 11: + 4. Thus running len on a :-element list takes 11: + 4 units
of time.

Exercise

How accurate is this estimate? If you try applying len to different sizes of
lists, do you obtain a consistent estimate for :?

18.6 Creating Recurrences

We will now see a systematic way of analytically computing the time of a program.
Suppose we have only one function f. We will define a function,) , to compute
an upper-bound of the time of f.) takes as many parameters as f does. TheIn general, we will have one

such cost function for each
function in the program. In
such cases, it would be useful to
give a different name to each
function to easily tell them
apart. Since we are looking at
only one function for now, we’ll
reduce notational overhead by
having only one) .

18.6. CREATING RECURRENCES 271

parameters to) represent the sizes of the corresponding arguments to f. Eventually
we will want to arrive at a closed form solution to) , i.e., one that does not refer to)
itself. But the easiest way to get there is to write a solution that is permitted to refer
to) , called a recurrence relation, and then see how to eliminate the self-reference
[section 18.10].

We repeat this procedure for each function in the program in turn. If there are
many functions, first solve for the one with no dependencies on other functions,
then use its solution to solve for a function that depends only on it, and progress
thus up the dependency chain. That way, when we get to a function that refers
to other functions, we will already have a closed-form solution for the referred
function’s running time and can simply plug in parameters to obtain a solution.

Exercise

The strategy outlined above doesn’t work when there are functions that de-
pend on each other. How would you generalize it to handle this case?

The process of setting up a recurrence is easy. We simply define the right-hand-
side of) to add up the operations performed in f’s body. This is straightforward
except for conditionals and recursion. We’ll elaborate on the treatment of condi-
tionals in a moment. If we get to a recursive call to f on the argument a, in the
recurrence we turn this into a (self-)reference to) on the size of a.

For conditionals, we use only the |Q| and |A| columns of the corresponding
table. Rather than multiplying by the size of the input, we add up the operations
that happen on one invocation of f other than the recursive call, and then add the
cost of the recursive call in terms of a reference to) . Thus, if we were doing
this for len above, we would define) (:)—the time needed on an input of length
:—in two parts: the value of) (0) (when the list is empty) and the value for non-
zero values of : . We know that) (0) = 4 (the cost of the first conditional and its
corresponding answer). If the list is non-empty, the cost is) (:) = 3+3+5+) (:−1)
(respectively from the first question, the second question, the remaining operations
in the second answer, and the recursive call on a list one element smaller). This
gives the following recurrence:

) (:) =
{

4 when : = 0
11 +) (: − 1) when : > 0

For a given list that is ? elements long (note that ? ≥ 0), this would take 11 steps
for the first element, 11 more steps for the second, 11 more for the third, and so on,
until we run out of list elements and need 4 more steps: a total of 11? + 4 steps.
Notice this is precisely the same answer we obtained by the tabular method!

272 CHAPTER 18. PREDICTING GROWTH

Exercise

Why can we assume that for a list ? elements long, ? ≥ 0? And why did we
take the trouble to explicitly state this above?

With some thought, you can see that the idea of constructing a recurrence works
even when there is more than one recursive call, and when the argument to that call
is one element structurally smaller. What we haven’t seen, however, is a way to
solve such relations in general. That’s where we’re going next [section 18.10].

18.7 A Notation for Functions

We have seen above that we can describe the running time of len through a func-
tion. We don’t have an especially good notation for writing such (anonymous)
functions. Wait, we do—lam(k): (11 * k) + 4 end—but my colleagues would
be horrified if you wrote this on their exams. Therefore, we’ll introduce the fol-
lowing notation to mean precisely the same thing:

[: → 11: + 4]

The brackets denote anonymous functions, with the parameters before the arrow
and the body after.

18.8 Comparing Functions

Let’s return to the running time of len. We’ve written down a function of great
precision: 11! 4! Is this justified?

At a fine-grained level already, no, it’s not. We’ve lumped many operations,
with different actual running times, into a cost of one. So perhaps we should not
worry too much about the differences between, say, [: → 11: + 4] and [: → 4: +
10]. If we were given two implementations with these running times, respectively,
it’s likely that we would pick other characteristics to choose between them.

What this boils down to is being able to compare two functions (representing
the performance of implementations) for whether one is somehow quantitatively
better in some meaningful sense than the other: i.e., is the quantitative difference
so great that it might lead to a qualitative one. The example above suggests that
small differences in constants probably do not matter. This suggests a definition of
this form:

∃2.∀= ∈ N, 51(=) ≤ 2 · 52(=) ⇒ 51 ≤ 52

18.8. COMPARING FUNCTIONS 273

Obviously, the “bigger” function is likely to be a less useful bound than a
“tighter” one. That said, it is conventional to write a “minimal” bound for func-
tions, which means avoiding unnecessary constants, sum terms, and so on. The
justification for this is given below [section 18.9].

Note carefully the order of identifiers. We must be able to pick the constant 2
up front for this relationship to hold.

Do Now!

Why this order and not the opposite order? What if we had swapped the two
quantifiers?

Had we swapped the order, it would mean that for every point along the number
line, there must exist a constant—and there pretty much always does! The swapped
definition would therefore be useless. What is important is that we can identify the
constant no matter how large the parameter gets. That is what makes this truly a
constant.

This definition has more flexibility than we might initially think. For instance,
consider our running example compared with [: → :2]. Clearly, the latter function
eventually dominates the former: i.e.,

[: → 11: + 4] ≤ [: → :2]
We just need to pick a sufficiently large constant and we will find this to be true.

Exercise

What is the smallest constant that will suffice?

You will find more complex definitions in the literature and they all have mer-
its, because they enable us to make finer-grained distinctions than this definition
allows. For the purpose of this book, however, the above definition suffices.

Observe that for a given function 5 , there are numerous functions that are less
than it. We use the notation $ (·) to describe this family of functions. Thus if In computer science this is

usually pronounced “big-Oh”,
though some prefer to call it the
Bachmann-Landau notation
after its originators.

6 ≤ 5 , we can write 6 ∈ $ (5), which we can read as “ 5 is an upper-bound for 6”.
Thus, for instance,

[: → 3:] ∈ $ ([: → 4: + 12])
[: → 4: + 12] ∈ $ ([: → :2])

and so on.
Pay especially close attention to our notation. We write ∈ rather than = or

some other symbol, because $ (5) describes a family of functions of which 6 is a
member. We also write 5 rather than 5 (G) because we are comparing functions—
5—rather than their values at particular points— 5 (G)—which would be ordinary

274 CHAPTER 18. PREDICTING GROWTH

numbers! Most of the notation in most the books and Web sites suffers from one
or both flaws. We know, however, that functions are values, and that functions can
be anonymous. We have actually exploited both facts to be able to write

[: → 3:] ∈ $ ([: → 4: + 12])

This is not the only notion of function comparison that we can have. For in-
stance, given the definition of ≤ above, we can define a natural relation <. This
then lets us ask, given a function 5 , what are all the functions 6 such that 6 ≤ 5 but
not 6 < 5 , i.e., those that are “equal” to 5 . This is the family of functions that areLook out! We are using quotes

because this is not the same as
ordinary function equality,
which is defined as the two
functions giving the same
answer on all inputs. Here, two
“equal” functions may not give
the same answer on any inputs.

separated by at most a constant; when the functions indicate the order of growth of
programs, “equal” functions signify programs that grow at the same speed (up to
constants). We use the notation Θ(·) to speak of this family of functions, so if 6 is
equivalent to 5 by this notion, we can write 6 ∈ Θ(5) (and it would then also be
true that 5 ∈ Θ(6)).

Exercise

Convince yourself that this notion of function equality is an equivalence rela-
tion, and hence worthy of the name “equal”. It needs to be (a) reflexive (i.e.,
every function is related to itself); (b) antisymmetric (if 5 ≤ 6 and 6 ≤ 5

then 5 and 6 are equal); and (c) transitive (5 ≤ 6 and 6 ≤ ℎ implies 5 ≤ ℎ).

18.9 Combining Big-Oh Without Woe

Now that we’ve introduced this notation, we should inquire about its closure prop-
erties: namely, how do these families of functions combine? To nudge your in-
tuitions, assume that in all cases we’re discussing the running time of functions.
We’ll consider three cases:

• Suppose we have a function f (whose running time is) in $ (�). Let’s say
we run it ? times, for some given constant. The running time of the resulting
code is then ? ×$ (�). However, observe that this is really no different from
$ (�): we can simply use a bigger constant for 2 in the definition of $ (·)—
in particular, we can just use ?2. Conversely, then, $ (?�) is equivalent to
$ (�). This is the heart of the intution that “multiplicative constants don’t
matter”.

• Suppose we have two functions, f in $ (�) and g in $ (�). If we run f

followed by g, we would expect the running time of the combination to be
the sum of their individual running times, i.e., $ (�) + $ (�). You should
convince yourself that this is simply $ (� + �).

18.10. SOLVING RECURRENCES 275

• Suppose we have two functions, f in $ (�) and g in $ (�). If f invokes g in
each of its steps, we would expect the running time of the combination to be
the product of their individual running times, i.e., $ (�) ×$ (�). You should
convince yourself that this is simply $ (� × �).

These three operations—addition, multiplication by a constant, and multiplication
by a function—cover just about all the cases. For instance, we can use this to To ensure that the table fits in a

reasonable width, we will abuse
notation.

reinterpret the tabular operations above (assuming everything is a function of :):
|Q| #Q TotQ |A| #A TotA Total
$ (1) $ (:) $ (:) $ (1) $ (1) $ (1) $ (:)
$ (1) $ (:) $ (:) $ (1) $ (:) $ (:) $ (:)
Because multiplication by constants doesn’t matter, we can replace the 3 with 1.
Because addition of a constant doesn’t matter (run the addition rule in reverse),
: + 1 can become : . Adding this gives us $ (:) + $ (:) = 2 × $ (:) ∈ $ (:). This
justifies claiming that running len on a :-element list takes time in $ ([: → :]),
which is a much simpler way of describing its bound than $ ([: → 11: + 4]). In
particular, it provides us with the essential information and nothing else: as the
input (list) grows, the running time grows proportional to it, i.e., if we add one
more element to the input, we should expect to add a constant more of time to the
running time.

18.10 Solving Recurrences

There is a great deal of literature on solving recurrence equations. In this section
we won’t go into general techniques, nor will we even discuss very many different
recurrences. Rather, we’ll focus on just a handful that should be in the repertoire of
every computer scientist. You’ll see these over and over, so you should instinctively
recognize their recurrence pattern and know what complexity they describe (or
know how to quickly derive it).

Earlier we saw a recurrence that had two cases: one for the empty input and one
for all others. In general, we should expect to find one case for each non-recursive
call and one for each recursive one, i.e., roughly one per cases clause. In what
follows, we will ignore the base cases so long as the size of the input is constant
(such as zero or one), because in such cases the amount of work done will also be
a constant, which we can generally ignore [section 18.8].

•) (:) =) (: − 1) + 2
=) (: − 2) + 2 + 2
=) (: − 3) + 2 + 2 + 2
= ...

276 CHAPTER 18. PREDICTING GROWTH

=) (0) + 2 × :
= 20 + 2 × :

Thus) ∈ $ ([: → :]). Intuitively, we do a constant amount of work (2)
each time we throw away one element (: − 1), so we do a linear amount of
work overall.

•
) (:) =) (: − 1) + :

=) (: − 2) + (: − 1) + :
=) (: − 3) + (: − 2) + (: − 1) + :
= ...
=) (0) + (: − (: − 1)) + (: − (: − 2)) + · · · + (: − 2) + (: − 1) + :
= 20 + 1 + 2 + · · · + (: − 2) + (: − 1) + :
= 20 + : · (:+1)

2

Thus) ∈ $ ([: → :2]). This follows from the solution to the sum of the
first : numbers.

We can also view this recurrence geometrically. Imagine each x below refers
to a unit of work, and we start with : of them. Then the first row has : units
of work:

xxxxxxxx

followed by the recurrence on : − 1 of them:

xxxxxxx

which is followed by another recurrence on one smaller, and so on, until we
fill end up with:

xxxxxxxx

xxxxxxx

xxxxxx

xxxxx

xxxx

xxx

xx

x

The total work is then essentially the area of this triangle, whose base and
height are both :: or, if you prefer, half of this : × : square:

xxxxxxxx

xxxxxxx.

xxxxxx..

18.10. SOLVING RECURRENCES 277

xxxxx...

xxxx....

xxx.....

xx......

x.......

Similar geometric arguments can be made for all these recurrences.

•) (:) =) (:/2) + 2
=) (:/4) + 2 + 2
=) (:/8) + 2 + 2 + 2
= ...
=) (:/2log2 :) + 2 · log2 :

= 21 + 2 · log2 :

Thus) ∈ $ ([: → log :]). Intuitively, we’re able to do only constant work
(2) at each level, then throw away half the input. In a logarithmic number of
steps we will have exhausted the input, having done only constant work each
time. Thus the overall complexity is logarithmic.

•) (:) =) (:/2) + :
=) (:/4) + :/2 + :
= ...
=) (1) + :/2log2 : + · · · + :/4 + :/2 + :
= 21 + : (1/2log2 : + · · · + 1/4 + 1/2 + 1)
= 21 + 2:

Thus) ∈ $ ([: → :]). Intuitively, the first time your process looks at all the
elements, the second time it looks at half of them, the third time a quarter,
and so on. This kind of successive halving is equivalent to scanning all the
elements in the input a second time. Hence this results in a linear process.

•) (:) = 2) (:/2) + :
= 2(2) (:/4) + :/2) + :
= 4) (:/4) + : + :
= 4(2) (:/8) + :/4) + : + :
= 8) (:/8) + : + : + :
= ...
= 2log2 :) (1) + : · log2 :

= : · 21 + : · log2 :

Thus) ∈ $ ([: → : · log :]). Intuitively, each time we’re processing all the
elements in each recursive call (the :) as well as decomposing into two half

278 CHAPTER 18. PREDICTING GROWTH

sub-problems. This decomposition gives us a recursion tree of logarithmic
height, at each of which levels we’re doing linear work.

•
) (:) = 2) (: − 1) + 2

= 2) (: − 1) + (2 − 1)2
= 2(2) (: − 2) + 2) + (2 − 1)2
= 4) (: − 2) + 32
= 4) (: − 2) + (4 − 1)2
= 4(2) (: − 3) + 2) + (4 − 1)2
= 8) (: − 3) + 72
= 8) (: − 3) + (8 − 1)2
= ...
= 2:) (0) + (2: − 1)2

Thus) ∈ $ ([: → 2:]). Disposing of each element requires doing a con-
stant amount of work for it and then doubling the work done on the rest. This
successive doubling leads to the exponential.

Exercise

Using induction, prove each of the above derivations.

Chapter 19

Sets Appeal

Earlier [section 12.2] we introduced sets. Recall that the elements of a set have
no specific order, and ignore duplicates. At that time we relied on Pyret’s built-in If these ideas are not familiar,

please read section 12.2, since
they will be important when
discussing the representation of
sets.

representation of sets. Now we will discuss how to build sets for ourselves. In what
follows, we will focus only on sets of numbers.

We will start by discussing how to represent sets using lists. Intuitively, using
lists to represent sets of data seems problematic, because lists respect both order
and duplication. For instance,

check:

[list: 1, 2, 3] is [list: 3, 2, 1, 1]

end

fails.
In principle, we want sets to obey the following interface: Note that a type called Set is

already built into Pyret, so we
won’t use that name below.

<set-operations> ::=

mt-set :: Set

is-in :: (T, Set<T> -> Bool)

insert :: (T, Set<T> -> Set<T>)

union :: (Set<T>, Set<T> -> Set<T>)

size :: (Set<T> -> Number)

to-list :: (Set<T> -> List<T>)

We may also find it also useful to have functions such as

insert-many :: (List<T>, Set<T> -> Set<T>)

which, combined with mt-set, easily gives us a to-set function.
Sets can contain many kinds of values, but not necessarily any kind: we need

to be able to check for two values being equal (which is a requirement for a set,

279

280 CHAPTER 19. SETS APPEAL

but not for a list!), which can’t be done with all values (such as functions); and
sometimes we might even want the elements to obey an ordering [section 19.2.1].
Numbers satisfy both characteristics.

19.1 Representing Sets by Lists

In what follows we will see multiple different representations of sets, so we will
want names to tell them apart. We’ll use LSet to stand for “sets represented as
lists”.

As a starting point, let’s consider the implementation of sets using lists as the
underlying representation. After all, a set appears to merely be a list wherein we
ignore the order of elements.

Representation Choices

The empty list can stand in for the empty set—

type LSet = List

mt-set = empty

—and we can presumably define size as

fun size<T>(s :: LSet<T>) -> Number:

s.length()

end

However, thisNreduction (of sets to lists) can be dangerous:

1. There is a subtle difference between lists and sets. The list

[list: 1, 1]

is not the same as

[list: 1]

because the first list has length two whereas the second has length one.
Treated as a set, however, the two are the same: they both have size one.
Thus, our implementation of size above is incorrect if we don’t take into
account duplicates (either during insertion or while computing the size).

19.1. REPRESENTING SETS BY LISTS 281

2. We might falsely make assumptions about the order in which elements are
retrieved from the set due to the ordering guaranteed provided by the under-
lying list representation. This might hide bugs that we don’t discover until
we change the representation.

3. We might have chosen a set representation because we didn’t need to care
about order, and expected lots of duplicate items. A list representation might
store all the duplicates, resulting in significantly more memory use (and
slower programs) than we expected.

To avoid these perils, we have to be precise about how we’re going to use
lists to represent sets. One key question (but not the only one, as we’ll soon see
[section 19.1.3]) is what to do about duplicates. One possibility is for insert to
check whether an element is already in the set and, if so, leave the representation
unchanged; this incurs a cost during insertion but avoids unnecessary duplication
and lets us use length to implement size. The other option is to define insert

as link—literally,

insert = link

—and have some other procedure perform the filtering of duplicates.

Time Complexity

What is the complexity of this representation of sets? Let’s consider just insert,
check, and size. Suppose the size of the set is : (where, to avoid ambiguity, we let
: represent the number of distinct elements). The complexity of these operations
depends on whether or not we store duplicates:

• If we don’t store duplicates, then size is simply length, which takes time
linear in : . Similarly, check only needs to traverse the list once to determine
whether or not an element is present, which also takes time linear in : . But
insert needs to check whether an element is already present, which takes
time linear in : , followed by at most a constant-time operation (link).

• If we do store duplicates, then insert is constant time: it simply links on
the new element without regard to whether it already is in the set represen-
tation. check traverses the list once, but the number of elements it needs
to visit could be significantly greater than : , depending on how many du-
plicates have been added. Finally, size needs to check whether or not each
element is duplicated before counting it.

282 CHAPTER 19. SETS APPEAL

Do Now!

What is the time complexity of size if the list has duplicates?

One implementation of size is

fun size<T>(s :: LSet<T>) -> Number:

cases (List) s:

| empty => 0

| link(f, r) =>

if r.member(f):

size(r)

else:

1 + size(r)

end

end

end

Let’s now compute the complexity of the body of the function, assuming the
number of distinct elements in s is : but the actual number of elements in s is
3, where 3 ≥ : . To compute the time to run size on 3 elements,) (3), we
should determine the number of operations in each question and answer. The first
question has a constant number of operations, and the first answer also a constant.
The second question also has a constant number of operations. Its answer is a
conditional, whose first question (r.member(f) needs to traverse the entire list,
and hence has $ ([: → 3]) operations. If it succeeds, we recur on something of
size) (3 − 1); else we do the same but perform a constant more operations. Thus
) (0) is a constant, while the recurrence (in big-Oh terms) is

) (3) = 3 +) (3 − 1)

Thus) ∈ $ ([3 → 32]). Note that this is quadratic in the number of elements in
the list, which may be much bigger than the size of the set.

Choosing Between Representations

Now that we have two representations with different complexities, it’s worth think-
ing about how to choose between them. To do so, let’s build up the following table.
The table distinguishes between the interface (the set) and the implementation (the
list), because—owing to duplicates in the representation—these two may not be
the same. In the table we’ll consider just two of the most common operations,
insertion and membership checking:

With Duplicates Without Duplicates

19.1. REPRESENTING SETS BY LISTS 283

insert is-in insert is-in

Size of Set constant linear linear linear
Size of List constant linear linear linear
A naive reading of this would suggest that the representation with duplicates is
better because it’s sometimes constant and sometimes linear, whereas the version
without duplicates is always linear. However, this masks a very important distinc-
tion: what the linear means. When there are no duplicates, the size of the list is
the same as the size of the set. However, with duplicates, the size of the list can be
arbitrarily larger than that of the set!

Based on this, we can draw several lessons:

1. Which representation we choose is a matter of how much duplication we
expect. If there won’t be many duplicates, then the version that stores dupli-
cates pays a small extra price in return for some faster operations.

2. Which representation we choose is also a matter of how often we expect
each operation to be performed. The representation without duplication is
“in the middle”: everything is roughly equally expensive (in the worst case).
With duplicates is “at the extremes”: very cheap insertion, potentially very
expensive membership. But if we will mostly only insert without checking
membership, and especially if we know membership checking will only oc-
cur in situations where we’re willing to wait, then permitting duplicates may
in fact be the smart choice. (When might we ever be in such a situation?
Suppose your set represents a backup data structure; then we add lots of data
but very rarely—indeed, only in case of some catastrophe—ever need to look
for things in it.)

3. Another way to cast these insights is that our form of analysis is too weak.
In situations where the complexity depends so heavily on a particular se-
quence of operations, big-Oh is too loose and we should instead study the
complexity of specific sequences of operations. We will address precisely
this question later [chapter 20].

Moreover, there is no reason a program should use only one representation.
It could well begin with one representation, then switch to another as it better
understands its workload. The only thing it would need to do to switch is to convert
all existing data between the representations.

How might this play out above? Observe that data conversion is very cheap
in one direction: since every list without duplicates is automatically also a list
with (potential) duplicates, converting in that direction is trivial (the representation
stays unchanged, only its interpretation changes). The other direction is harder: we

284 CHAPTER 19. SETS APPEAL

have to filter duplicates (which takes time quadratic in the number of elements in
the list). Thus, a program can make an initial guess about its workload and pick
a representation accordingly, but maintain statistics as it runs and, when it finds
its assumption is wrong, switch representations—and can do so as many times as
needed.

Other Operations

Exercise

Implement the remaining operations catalogued above (<set-operations>)
under each list representation.

Exercise

Implement the operation

remove :: (Set<T>, T -> Set<T>)

under each list representation (renaming Set appropriately. What difference
do you see?

Do Now!

Suppose you’re asked to extend sets with these operations, as the set analog
of first and rest:

one :: (Set<T> -> T)

others :: (Set<T> -> T)

You should refuse to do so! Do you see why?

With lists the “first” element is well-defined, whereas sets are defined to have
no ordering. Indeed, just to make sure users of your sets don’t accidentally assume
anything about your implementation (e.g., if you implement one using first, they
may notice that one always returns the element most recently added to the list), you
really ought to return a random element of the set on each invocation.

Unfortunately, returning a random element means the above interface is unus-
able. Suppose s is bound to a set containing 1, 2, and 3. Say the first time one(s)
is invoked it returns 2, and the second time 1. (This already means one is not
a function.) The third time it may again return 2. Thus others has to remem-
ber which element was returned the last time one was called, and return the set

19.2. MAKING SETS GROW ON TREES 285

sans that element. Suppose we now invoke one on the result of calling others.
That means we might have a situation where one(s) produces the same result as
one(others(s)).

Exercise

Why is it unreasonable for one(s) to produce the same result as one(others(s))?

Exercise

Suppose you wanted to extend sets with a subset operation that partitioned
the set according to some condition. What would its type be?

Exercise

The types we have written above are not as crisp as they could be. Define a
has-no-duplicates predicate, refine the relevant types with it, and check
that the functions really do satisfy this criterion.

19.2 Making Sets Grow on Trees

Let’s start by noting that it seems better, if at all possible, to avoid storing du-
plicates. Duplicates are only problematic during insertion due to the need for a
membership test. But if we can make membership testing cheap, then we would
be better off using it to check for duplicates and storing only one instance of each
value (which also saves us space). Thus, let’s try to improve the time complexity
of membership testing (and, hopefully, of other operations too).

It seems clear that with a (duplicate-free) list representation of a set, we cannot
really beat linear time for membership checking. This is because at each step, we
can eliminate only one element from contention which in the worst case requires
a linear amount of work to examine the whole set. Instead, we need to eliminate
many more elements with each comparison—more than just a constant.

In our handy set of recurrences [section 18.10], one stands out:) (:) =) (:/2)+
2. It says that if, with a constant amount of work we can eliminate half the input,
we can perform membership checking in logarithmic time. This will be our goal.

Before we proceed, it’s worth putting logarithmic growth in perspective. Asymp-
totically, logarithmic is obviously not as nice as constant. However, logarithmic
growth is very pleasant because it grows so slowly. For instance, if an input dou-
bles from size : to 2: , its logarithm—and hence resource usage—grows only by

286 CHAPTER 19. SETS APPEAL

log 2: − log : = log 2, which is a constant. Indeed, for just about all problems,
practically speaking the logarithm of the input size is bounded by a constant (that
isn’t even very large). Therefore, in practice, for many programs, if we can shrink
our resource consumption to logarithmic growth, it’s probably time to move on and
focus on improving some other part of the system.

Converting Values to Ordered Values

We have actually just made an extremely subtle assumption. When we check one
element for membership and eliminate it, we have eliminated only one element. To
eliminate more than one element, we need one element to “speak for” several. That
is, eliminating that one value needs to have safely eliminated several others as well
without their having to be consulted. In particular, then, we can no longer compare
for mere equality, which compares one set element against another element; we
need a comparison that compares against an element against a set of elements.

To do this, we have to convert an arbitrary datum into a datatype that permits
such comparison. This is known as hashing. A hash function consumes an arbitrary
value and produces a comparable representation of it (its hash)—most commonly
(but not strictly necessarily), a number. A hash function must naturally be deter-
ministic: a fixed value should always yield the same hash (otherwise, we might
conclude that an element in the set is not actually in it, etc.). Particular uses may
need additional properties: e.g., below we assume its output is partially ordered.

Let us now consider how one can compute hashes. If the input datatype is a
number, it can serve as its own hash. Comparison simply uses numeric comparison
(e.g., <). Then, transitivity of < ensures that if an element � is less than another
element �, then � is also less than all the other elements bigger than �. The same
principle applies if the datatype is a string, using string inequality comparison. But
what if we are handed more complex datatypes?

Before we answer that, consider that in practice numbers are more efficient to
compare than strings (since comparing two numbers is very nearly constant time).
Thus, although we could use strings directly, it may be convenient to find a numeric
representation of strings. In both cases, we will convert each character of the string
into a number—e.g., by considering its ASCII encoding. Based on that, here are
two hash functions:

1. Consider a list of primes as long as the string. Raise each prime by the
corresponding number, and multiply the result. For instance, if the string is
represented by the character codes [6, 4, 5] (the first character has code
6, the second one 4, and the third 5), we get the hash

num-expt(2, 6) * num-expt(3, 4) * num-expt(5, 5)

19.2. MAKING SETS GROW ON TREES 287

or 16200000.

2. Simply add together all the character codes. For the above example, this
would correspond to the has

6 + 4 + 5

or 15.

The first representation is invertible, using the Fundamental Theorem of Arith-
metic: given the resulting number, we can reconstruct the input unambiguously
(i.e., 16200000 can only map to the input above, and none other). The second
encoding is, of course, not invertible (e.g., simply permute the characters and, by
commutativity, the sum will be the same).

Now let us consider more general datatypes. The principle of hashing will be
similar. If we have a datatype with several variants, we can use a numeric tag to
represent the variants: e.g., the primes will give us invertible tags. For each field of
a record, we need an ordering of the fields (e.g., lexicographic, or “alphabetical”
order), and must hash their contents recursively; having done so, we get in effect a
string of numbers, which we have shown how to handle.

Now that we have understood how one can deterministically convert any arbi-
trary datum into a number, in what follows, we will assume that the trees repre-
senting sets are trees of numbers. However, it is worth considering what we really
need out of a hash. In section 28.2, we will not need partial ordering. Invertibil-
ity is more tricky. In what follows below, we have assumed that finding a hash
is tantamount to finding the set element itself, which is not true if multiple values
can have the same hash. In that case, the easiest thing to do is to store alongside
the hash all the values that hashed to it, and we must search through all of these
values to find our desired element. Unfortunately, this does mean that in an espe-
cially perverse situation, the desired logarithmic complexity will actually be linear
complexity after all!

In real systems, hashes of values are typically computed by the programming
language implementation. This has the virtue that they can often be made unique.
How does the system achieve this? Easy: it essentially uses the memory address of
a value as its hash. (Well, not so fast! Sometimes the memory system can and does
move values around through a process called garbage collection). In these cases
computing a hash value is more complicated.)

Using Binary Trees
Because logs come from trees.

Clearly, a list representation does not let us eliminate half the elements with a
constant amount of work; instead, we need a tree. Thus we define a binary tree of

http://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic
http://en.wikipedia.org/wiki/Fundamental_theorem_of_arithmetic

288 CHAPTER 19. SETS APPEAL

(for simplicity) numbers:

data BT:

| leaf

| node(v :: Number, l :: BT, r :: BT)

end

Given this definition, let’s define the membership checker:

fun is-in-bt(e :: Number, s :: BT) -> Boolean:

cases (BT) s:

| leaf => false

| node(v, l, r) =>

if e == v:

true

else:

is-in-bt(e, l) or is-in-bt(e, r)

end

end

end

Oh, wait. If the element we’re looking for isn’t the root, what do we do? It could
be in the left child or it could be in the right; we won’t know for sure until we’ve
examined both. Thus, we can’t throw away half the elements; the only one we can
dispose of is the value at the root. Furthermore, this property holds at every level
of the tree. Thus, membership checking needs to examine the entire tree, and we
still have complexity linear in the size of the set.

How can we improve on this? The comparison needs to help us eliminate not
only the root but also one whole sub-tree. We can only do this if the comparison
“speaks for” an entire sub-tree. It can do so if all elements in one sub-tree are less
than or equal to the root value, and all elements in the other sub-tree are greater
than or equal to it. Of course, we have to be consistent about which side contains
which subset; it is conventional to put the smaller elements to the left and the bigger
ones to the right. This refines our binary tree definition to give us a binary search
tree (BST).

19.2. MAKING SETS GROW ON TREES 289

Do Now!

Here is a candiate predicate for recognizing when a binary tree is in fact a
binary search tree:

fun is-a-bst-buggy(b :: BT) -> Boolean:

cases (BT) b:

| leaf => true

| node(v, l, r) =>

(is-leaf(l) or (l.v <= v)) and

(is-leaf(r) or (v <= r.v)) and

is-a-bst-buggy(l) and

is-a-bst-buggy(r)

end

end

Is this definition correct?

It’s not. To actually throw away half the tree, we need to be sure that everything
in the left sub-tree is less than the value in the root and similarly, everything in the
right sub-tree is greater than the root. But the definition above performs only a We have used <= instead of <

above because even though we
don’t want to permit duplicates
when representing sets, in other
cases we might not want to be
so stringent; this way we can
reuse the above implementation
for other purposes.

“shallow” comparison. Thus we could have a root a with a right child, b, such that
b > a; and the b node could have a left child c such that c < b; but this does not
guarantee that c > a. In fact, it is easy to construct a counter-example that passes
this check:

check:

node(5, node(3, leaf, node(6, leaf, leaf)), leaf)

satisfies is-a-bst-buggy # FALSE!

end

Exercise

Fix the BST checker.

With a corrected definition, we can now define a refined version of binary trees
that are search trees:

type BST = BT%(is-a-bst)

We can also remind ourselves that the purpose of this exercise was to define sets,
and define TSets to be tree sets:

type TSet = BST

mt-set = leaf

290 CHAPTER 19. SETS APPEAL

Now let’s implement our operations on the BST representation. First we’ll write
a template:

fun is-in(e :: Number, s :: BST) -> Bool:

cases (BST) s:

| leaf => ...

| node(v, l :: BST, r :: BST) => ...

... is-in(l) ...

... is-in(r) ...

end

end

Observe that the data definition of a BST gives us rich information about the two
children: they are each a BST, so we know their elements obey the ordering prop-
erty. We can use this to define the actual operations:

fun is-in(e :: Number, s :: BST) -> Boolean:

cases (BST) s:

| leaf => false

| node(v, l, r) =>

if e == v:

true

else if e < v:

is-in(e, l)

else if e > v:

is-in(e, r)

end

end

end

fun insert(e :: Number, s :: BST) -> BST:

cases (BST) s:

| leaf => node(e, leaf, leaf)

| node(v, l, r) =>

if e == v:

s

else if e < v:

node(v, insert(e, l), r)

else if e > v:

node(v, l, insert(e, r))

end

end

19.2. MAKING SETS GROW ON TREES 291

end

In both functions we are strictly assuming the invariant of the BST, and in the latter
case also ensuring it. Make sure you identify where, why, and how.

You should now be able to define the remaining operations. Of these, size
clearly requires linear time (since it has to count all the elements), but because
is-in and insert both throw away one of two children each time they recur, they
take logarithmic time.

Exercise

Suppose we frequently needed to compute the size of a set. We ought to be

able to reduce the time complexity of size by having each treeNcache its
size, so that size could complete in constant time (note that the size of the
tree clearly fits the criterion of a cache, since it can always be reconstructed).
Update the data definition and all affected functions to keep track of this
information correctly.

But wait a minute. Are we actually done? Our recurrence takes the form
) (:) =) (:/2) + 2, but what in our data definition guaranteed that the size of the
child traversed by is-in will be half the size?

Do Now!

Construct an example—consisting of a sequence of inserts to the empty
tree—such that the resulting tree is not balanced. Show that searching for
certain elements in this tree will take linear, not logarithmic, time in its size.

Imagine starting with the empty tree and inserting the values 1, 2, 3, and 4, in
order. The resulting tree would be

check:

insert(4, insert(3, insert(2, insert(1, mt-set)))) is

node(1, leaf,

node(2, leaf,

node(3, leaf,

node(4, leaf, leaf))))

end

Searching for 4 in this tree would have to examine all the set elements in the tree.
In other words, this binary search tree is degenerate—it is effectively a list, and we
are back to having the same complexity we had earlier.

Therefore, using a binary tree, and even a BST, does not guarantee the complex-
ity we want: it does only if our inputs have arrived in just the right order. However,

292 CHAPTER 19. SETS APPEAL

we cannot assume any input ordering; instead, we would like an implementation
that works in all cases. Thus, we must find a way to ensure that the tree is always
balanced, so each recursive call in is-in really does throw away half the elements.

A Fine Balance: Tree Surgery

Let’s define a balanced binary search tree (BBST). It must obviously be a search
tree, so let’s focus on the “balanced” part. We have to be careful about precisely
what this means: we can’t simply expect both sides to be of equal size because this
demands that the tree (and hence the set) have an even number of elements and,
even more stringently, to have a size that is a power of two.

Exercise

Define a predicate for a BBST that consumes a BT and returns a Boolean

indicating whether or not it a balanced search tree.

Therefore, we relax the notion of balance to one that is both accommodating
and sufficient. We use the term balance factor for a node to refer to the height of its
left child minus the height of its right child (where the height is the depth, in edges,
of the deepest node). We allow every node of a BBST to have a balance factor of
−1, 0, or 1 (but nothing else): that is, either both have the same height, or the left
or the right can be one taller. Note that this is a recursive property, but it applies
at all levels, so the imbalance cannot accumulate making the whole tree arbitrarily
imbalanced.

Exercise

Given this definition of a BBST, show that the number of nodes is exponential
in the height. Thus, always recurring on one branch will terminate after a
logarithmic (in the number of nodes) number of steps.

Here is an obvious but useful observation: every BBST is also a BST (this was
true by the very definition of a BBST). Why does this matter? It means that a
function that operates on a BST can just as well be applied to a BBST without any
loss of correctness.

So far, so easy. All that leaves is a means of creating a BBST, because it’s
responsible for ensuring balance. It’s easy to see that the constant empty-set is a
BBST value. So that leaves only insert.

Here is our situation with insert. Assuming we start with a BBST, we can
determine in logarithmic time whether the element is already in the tree and, if so,
ignore it. When inserting an element, given balanced trees, the insert for a BSTTo implement a bag we count

how many of each element are
in it, which does not affect the
tree’s height.

19.2. MAKING SETS GROW ON TREES 293

takes only a logarithmic amount of time to perform the insertion. Thus, if perform-
ing the insertion does not affect the tree’s balance, we’re done. Therefore, we only
need to consider cases where performing the insertion throws off the balance.

Observe that because < and > are symmetric (likewise with <= and >=), we
can consider insertions into one half of the tree and a symmetric argument han-
dles insertions into the other half. Thus, suppose we have a tree that is currently
balanced into which we are inserting the element 4. Let’s say 4 is going into the
left sub-tree and, by virtue of being inserted, will cause the entire tree to become
imbalanced. Some trees, like family trees

(section 14.1) represent
real-world data. It makes no
sense to “balance” a family
tree: it must accurately model
whatever reality it represents.
These set-representing trees, in
contrast, are chosen by us, not
dictated by some external
reality, so we are free to
rearrange them.

There are two ways to proceed. One is to consider all the places where we
might insert 4 in a way that causes an imbalance and determine what to do in each
case.

Exercise

Enumerate all the cases where insertion might be problematic, and dictate
what to do in each case.

The number of cases is actually quite overwhelming (if you didn’t think so,
you missed a few...). Therefore, we instead attack the problem after it has oc-
curred: allow the existing BST insert to insert the element, assume that we have
an imbalanced tree, and show how to restore its balance. The insight that a tree can be

made “self-balancing” is quite
remarkable, and there are now
many solutions to this problem.
This particular one, one of the
oldest, is due to G.M.
Adelson-Velskii and E.M.
Landis. In honor of their initials
it is called an AVL Tree, though
the tree itself is quite evident;
their genius is in defining
re-balancing.

Thus, in what follows, we begin with a tree that is balanced; insert causes it to
become imbalanced; we have assumed that the insertion happened in the left sub-
tree. In particular, suppose a (sub-)tree has a balance factor of 2 (positive because
we’re assuming the left is imbalanced by insertion). The procedure for restoring
balance depends critically on the following property:

Exercise

Show that if a tree is currently balanced, i.e., the balance factor at every node
is −1, 0, or 1, then insert can at worst make the balance factor ±2.

The algorithm that follows is applied as insert returns from its recursion,
i.e., on the path from the inserted value back to the root. Since this path is of
logarithmic length in the set’s size (due to the balancing property), and (as we
shall see) performs only a constant amount of work at each step, it ensures that
insertion also takes only logarithmic time, thus completing our challenge.

To visualize the algorithm, let’s use this tree schematic:
p

/ \

q C

294 CHAPTER 19. SETS APPEAL

/ \

A B

Here, ? is the value of the element at the root (though we will also abuse terminol-
ogy and use the value at a root to refer to that whole tree), @ is the value at the root
of the left sub-tree (so @ < ?), and �, �, and � name the respective sub-trees. We
have assumed that 4 is being inserted into the left sub-tree, which means 4 < ?.

Let’s say that � is of height : . Before insertion, the tree rooted at @ must have
had height : +1 (or else one insertion cannot create imbalance). In turn, this means
� must have had height : or : − 1, and likewise for �.

Suppose that after insertion, the tree rooted at @ has height : + 2. Thus, either
� or � has height : + 1 and the other must have height less than that (either : or
: − 1).

Exercise

Why can they both not have height : + 1 after insertion?

This gives us two cases to consider.

Left-Left Case

Let’s say the imbalance is in �, i.e., it has height : + 1. Let’s expand that tree:
p

/ \

q C

/ \

r B

/ \

A1 A2

We know the following about the data in the sub-trees. We’ll use the notation) < 0
where) is a tree and 0 is a single value to mean every value in) is less than 0.

• �1 < A.

• A < �2 < @.

• @ < � < ?.

• ? < �.

Let’s also remind ourselves of the sizes:

• The height of �1 or of �2 is : (the cause of imbalance).

19.2. MAKING SETS GROW ON TREES 295

• The height of the other �8 is : − 1 (see the exercise above).

• The height of � is : (initial assumption; : is arbitrary).

• The height of � must be : − 1 or : (argued above).

Imagine this tree is a mobile, which has gotten a little skewed to the left. You
would naturally think to suspend the mobile a little further to the left to bring it
back into balance. That is effectively what we will do:

q

/ \

r p

/ \ / \

A1 A2 B C

Observe that this preserves each of the ordering properties above. In addition, the
� subtree has been brought one level closer to the root than earlier relative to � and
�. This restores the balance (as you can see if you work out the heights of each of
�8 , �, and �). Thus, we have also restored balance.

Left-Right Case

The imbalance might instead be in �. Expanding:
p

/ \

q C

/ \

A r

/ \

B1 B2

Again, let’s record what we know about data order:

• � < @.

• @ < �1 < A.

• A < �2 < ?.

• ? < �.

and sizes:

• Suppose the height of � is : .

• The height of � must be : − 1 or : .

296 CHAPTER 19. SETS APPEAL

• The height of �1 or �2 must be : , but not both (see the exercise above). The
other must be : − 1.

We therefore have to somehow bring �1 and �2 one level closer to the root of the
tree. By using the above data ordering knowledge, we can construct this tree:

p

/ \

r C

/ \

q B2

/ \

A B1

Of course, if �1 is the problematic sub-tree, this still does not address the problem.
However, we are now back to the previous (left-left) case; rotating gets us to:

r

/ \

q p

/ \ / \

A B1 B2 C

Now observe that we have precisely maintained the data ordering constraints. Fur-
thermore, from the root, �’s lowest node is at height : + 1 or : + 2; so is �1’s; so
is �2’s; and �’s is at : + 2.

Any Other Cases?

Were we a little too glib before? In the left-right case we said that only one of �1
or �2 could be of height : (after insertion); the other had to be of height : − 1.
Actually, all we can say for sure is that the other has to be at most height : − 2.

Exercise

• Can the height of the other tree actually be : − 2 instead of : − 1?

• If so, does the solution above hold? Is there not still an imbalance of
two in the resulting tree?

• Is there actually a bug in the above algorithm?

Chapter 20

Halloween Analysis

In chapter 18, we introduced the idea of big-Oh complexity to measure the worst-
case time of a computation. As we saw in section 19.1.3, however, this is some-
times too coarse a bound when the complexity is heavily dependent on the exact
sequence of operations run. Now, we will consider a different style of complexity
analysis that better accommodates operation sequences.

20.1 A First Example

Consider, for instance, a set that starts out empty, followed by a sequence of : in-
sertions and then : membership tests, and suppose we are using the representation
without duplicates. Insertion time is proportional to the size of the set (and list);
this is initially 0, then 1, and so on, until it reaches size : . Therefore, the total cost
of the sequence of insertions is : · (: + 1)/2. The membership tests cost : each in
the worst case, because we’ve inserted up to : distinct elements into the set. The
total time is then

:2/2 + :/2 + :2

for a total of 2: operations, yielding an average of
3
4
: + 1

4
steps per operation in the worst case.

20.2 The New Form of Analysis

What have we computed? We are still computing a worst case cost, because we
have taken the cost of each operation in the sequence in the worst case. We are then

297

298 CHAPTER 20. HALLOWEEN ANALYSIS

computing the average cost per operation. Therefore, this is a average of worst
cases. Note that because this is an average per operation, it does not say anythingImportantly, this is different

from what is known as
average-case analysis, which
uses probability theory to
compute the estimated cost of
the computation. We have not
used any probability here.

about how bad any one operation can be (which, as we will see [section 20.3.5],
can be quite a bit worse); it only says what their average is.

In the above case, this new analysis did not yield any big surprises. We have
found that on average we spend about : steps per operation; a big-Oh analysis
would have told us that we’re performing 2: operations with a cost of$ ([: → :])
each in the number of distinct elements; per operation, then, we are performing
roughly linear work in the worst-case number of set elements.

As we will soon see, however, this won’t always be the case: this new analysis
can cough up pleasant surprises.

Before we proceed, we should give this analysis its name. Formally, it is called
amortized analysis. Amortization is the process of spreading a payment out over an
extended but fixed term. In the same way, we spread out the cost of a computation
over a fixed sequence, then determine how much each payment will be.We have given it a whimsical

name because Halloween is a(n
American) holiday devoted to
ghosts, ghouls, and other
symbols of death. Amortization
comes from the Latin root
mort-, which means death,
because an amortized analysis
is one conducted “at the death”,
i.e., at the end of a fixed
sequence of operations.

20.3 An Example: Queues from Lists

We have already seen lists [chapter 9] and sets [chapter 19]. Now let’s consider
another fundamental computer science data structure: the queue. A queue is a lin-
ear, ordered data structure, just like a list; however, the set of operations they offer
is different. In a list, the traditional operations follow a last-in, first-out discipline:
.first returns the element most recently linked. In contrast, a queue follows
a first-in, first-out discipline. That is, a list can be visualized as a stack, while a
queue can be visualized as a conveyer belt.

List Representations

We can define queues using lists in the natural way: every enqueue is implemented
with link, while every dequeue requires traversing the whole list until its end.
Conversely, we could make enqueuing traverse to the end, and dequeuing corre-
spond to .rest. Either way, one of these operations will take constant time while
the other will be linear in the length of the list representing the queue.

In fact, however, the above paragraph contains a key insight that will let us do
better.

Observe that if we store the queue in a list with most-recently-enqueued ele-
ment first, enqueuing is cheap (constant time). In contrast, if we store the queue
in the reverse order, then dequeuing is constant time. It would be wonderful if
we could have both, but once we pick an order we must give up one or the other.

http://en.wikipedia.org/wiki/Halloween

20.3. AN EXAMPLE: QUEUES FROM LISTS 299

Unless, that is, we pick...both.
One half of this is easy. We simply enqueue elements into a list with the most

recent addition first. Now for the (first) crucial insight: when we need to dequeue,
we reverse the list. Now, dequeuing also takes constant time.

A First Analysis

Of course, to fully analyze the complexity of this data structure, we must also
account for the reversal. In the worst case, we might argue that any operation
might reverse (because it might be the first dequeue); therefore, the worst-case
time of any operation is the time it takes to reverse, which is linear in the length of
the list (which corresponds to the elements of the queue).

However, this answer should be unsatisfying. If we perform : enqueues fol-
lowed by : dequeues, then each of the enqueues takes one step; each of the last
: −1 dequeues takes one step; and only the first dequeue requires a reversal, which
takes steps proportional to the number of elements in the list, which at that point is
: . Thus, the total cost of operations for this sequence is : ·1+ : + (:−1) ·1 = 3:−1
for a total of 2: operations, giving an amortized complexity of effectively constant
time per operation!

More Liberal Sequences of Operations

In the process of this, however, I’ve quietly glossed over something you’ve proba-
bly noticed: in our candidate sequence all dequeues followed all enqueues. What
happens on the next enqueue? Because the list is now reversed, it will have to take
a linear amount of time! So we have only partially solved the problem.

Now we can introduce the second insight: have two lists instead of one. One
of them will be the tail of the queue, where new elements get enqueued; the other
will be the head of the queue, where they get dequeued:

data Queue<T>:

| queue(tail :: List<T>, head :: List<T>)

end

mt-q :: Queue = queue(empty, empty)

Provided the tail is stored so that the most recent element is the first, then enqueuing
takes constant time:

fun enqueue<T>(q :: Queue<T>, e :: T) -> Queue<T>:

queue(link(e, q.tail), q.head)

end

300 CHAPTER 20. HALLOWEEN ANALYSIS

For dequeuing to take constant time, the head of the queue must be stored in
the reverse direction. However, how does any element ever get from the tail to the
head? Easy: when we try to dequeue and find no elements in the head, we reverse
the (entire) tail into the head (resulting in an empty tail). We will first define a
datatype to represent the response from dequeuing:

data Response<T>:

| elt-and-q(e :: T, r :: Queue<T>)

end

Now for the implementation of dequeue:

fun dequeue<T>(q :: Queue<T>) -> Response<T>:

cases (List) q.head:

| empty =>

new-head = q.tail.reverse()

elt-and-q(new-head.first,

queue(empty, new-head.rest))

| link(f, r) =>

elt-and-q(f,

queue(q.tail, r))

end

end

A Second Analysis

We can now reason about sequences of operations as we did before, by adding up
costs and averaging. However, another way to think of it is this. Let’s give each
element in the queue three “credits”. Each credit can be used for one constant-time
operation.

One credit gets used up in enqueuing. So long as the element stays in the tail
list, it still has two credits to spare. When it needs to be moved to the head list, it
spends one more credit in the link step of reversal. Finally, the dequeuing operation
performs one operation too.

Because the element does not run out of credits, we know it must have had
enough. These credits reflect the cost of operations on that element. From this
(very informal) analysis, we can conclude that in the worst case, any permutation
of enqueues and dequeues will still cost only a constant amount of amortized time.

20.4. READING MORE 301

Amortization Versus Individual Operations

Note, however, that the constant represents an average across the sequence of op-
erations. It does not put a bound on the cost of any one operation. Indeed, as we
have seen above, when dequeue finds the head list empty it reverses the tail, which
takes time linear in the size of the tail—not constant at all! Therefore, we should be
careful to not assume that every step in the sequence will is bounded. Nevertheless,
an amortized analysis sometimes gives us a much more nuanced understanding of
the real behavior of a data structure than a worst-case analysis does on its own.

20.4 Reading More

At this point we have only briefly touched on the subject of amortized analysis. A
very nice tutorial by Rebecca Fiebrink provides much more information. The au-
thoritative book on algorithms, Introduction to Algorithms by Cormen, Leiserson,
Rivest, and Stein, covers amortized analysis in extensive detail.

https://web.archive.org/web/20131020020356/http://www.cs.princeton.edu/~fiebrink/423/AmortizedAnalysisExplained_Fiebrink.pdf

302 CHAPTER 20. HALLOWEEN ANALYSIS

Chapter 21

Sharing and Equality

21.1 Re-Examining Equality

Consider the following data definition and example values:

data BinTree:

| leaf

| node(v, l :: BinTree, r :: BinTree)

end

a-tree =

node(5,

node(4, leaf, leaf),

node(4, leaf, leaf))

b-tree =

block:

four-node = node(4, leaf, leaf)

node(5,

four-node,

four-node)

end

In particular, it might seem that the way we’ve written b-tree is morally equiv-
alent to how we’ve written a-tree, but we’ve created a helpful binding to avoid
code duplication.

Because both a-tree and b-tree are bound to trees with 5 at the root and
a left and right child each containing 4, we can indeed reasonably consider these
trees equivalent. Sure enough:

303

304 CHAPTER 21. SHARING AND EQUALITY

<equal-tests> ::=

check:

a-tree is b-tree

a-tree.l is a-tree.l

a-tree.l is a-tree.r

b-tree.l is b-tree.r

end

However, there is another sense in which these trees are not equivalent. con-
cretely, a-tree constructs a distinct node for each child, while b-tree uses the
same node for both children. Surely this difference should show up somehow, but
we have not yet seen a way to write a program that will tell these apart.

By default, the is operator uses the same equality test as Pyret’s ==. There
are, however, other equality tests in Pyret. In particular, the way we can tell apart
these data is by using Pyret’s identical function, which implements reference
equality. This checks not only whether two values are structurally equivalent but
whether they are the result of the very same act of value construction. With this,
we can now write additional tests:

check:

identical(a-tree, b-tree) is false

identical(a-tree.l, a-tree.l) is true

identical(a-tree.l, a-tree.r) is false

identical(b-tree.l, b-tree.r) is true

end

Let’s step back for a moment and consider the behavior that gives us this result.
We can visualize the different values by putting each distinct value in a separate
location alongside the running program. We can draw the first step as creating a
node with value 4:

21.1. RE-EXAMINING EQUALITY 305

a-tree =

node(5,

@1001,

node(4, leaf, leaf))

b-tree =

block:

four-node = node(4, leaf, leaf)

node(5,

four-node,

four-node)

end

Heap

• @1001:

node(4, leaf, leaf)

The next step creates another node with value 4, distinct from the first:

a-tree =

node(5, @1001, @1002)

b-tree =

block:

four-node = node(4, leaf, leaf)

node(5,

four-node,

four-node)

end

Heap

• @1001:

node(4, leaf, leaf)

• @1002:

node(4, leaf, leaf)

Then the node for a-tree is created:

306 CHAPTER 21. SHARING AND EQUALITY

a-tree = @1003

b-tree =

block:

four-node = node(4, leaf, leaf)

node(5,

four-node,

four-node)

end

Heap

• @1001:

node(4, leaf, leaf)

• @1002:

node(4, leaf, leaf)

• @1003:

node(5, @1001, @1002)

When evaluating the block for b-tree, first a single node is created for the
four-node binding:

a-tree = @1003

b-tree =

block:

four-node = @1004

node(5,

four-node,

four-node)

end

21.1. RE-EXAMINING EQUALITY 307

Heap

• @1001:

node(4, leaf, leaf)

• @1002:

node(4, leaf, leaf)

• @1003:

node(5, @1001, @1002)

• @1004:

node(4, leaf, leaf)

These location values can be substituted just like any other, so they get substi-
tuted for four-node to continue evaluation of the block. We skipped substituting a-tree

for the moment, that will come
up later.

a-tree = @1003

b-tree =

block:

node(5, @1004, @1004)

end

308 CHAPTER 21. SHARING AND EQUALITY

Heap

• @1001:

node(4, leaf, leaf)

• @1002:

node(4, leaf, leaf)

• @1003:

node(5, @1001, @1002)

• @1004:

node(4, leaf, leaf)

Finally, the node for b-tree is created:

a-tree = @1003

b-tree = @1005

21.1. RE-EXAMINING EQUALITY 309

Heap

• @1001:

node(4, leaf, leaf)

• @1002:

node(4, leaf, leaf)

• @1003:

node(5, @1001, @1002)

• @1004:

node(4, leaf, leaf)

• @1005:

node(5, @1004, @1004)

This visualization can help us explain the test we wrote using identical.
Let’s consider the test with the appropriate location references substituted for a-tree
and b-tree:

check:

identical(@1003, @1005)

is false

identical(@1003.l, @1003.l)

is true

identical(@1003.l, @1003.r)

is false

identical(@1005.l, @1005.r)

is true

end

310 CHAPTER 21. SHARING AND EQUALITY

Heap

• @1001:

node(4, leaf, leaf)

• @1002:

node(4, leaf, leaf)

• @1003:

node(5, @1001, @1002)

• @1004:

node(4, leaf, leaf)

• @1005:

node(5, @1004, @1004)

check:

identical(@1003, @1005)

is false

identical(@1001, @1001)

is true

identical(@1001, @1004)

is false

identical(@1004, @1004)

is true

end

21.1. RE-EXAMINING EQUALITY 311

Heap

• @1001:

node(4, leaf, leaf)

• @1002:

node(4, leaf, leaf)

• @1003:

node(5, @1001, @1002)

• @1004:

node(4, leaf, leaf)

• @1005:

node(5, @1004, @1004)

There is actually another way to write these tests in Pyret: the is operator can
also be parameterized by a different equality predicate than the default ==. Thus,
the above block can equivalently be written as: We can use is-not to check for

expected failure of equality.
check:

a-tree is-not%(identical) b-tree

a-tree.l is%(identical) a-tree.l

a-tree.l is-not%(identical) a-tree.r

b-tree.l is%(identical) b-tree.r

end

We will use this style of equality testing from now on.
Observe how these are the same values that were compared earlier (<equal-

tests>), but the results are now different: some values that were true earlier are
now false. In particular,

check:

a-tree is b-tree

a-tree is-not%(identical) b-tree

a-tree.l is a-tree.r

a-tree.l is-not%(identical) a-tree.r

312 CHAPTER 21. SHARING AND EQUALITY

end

Later we will return both to what identical really means [section 24.4] (Pyret
has a full range of equality operations suitable for different situations).

Exercise

There are many more equality tests we can and should perform even with the
basic data above to make sure we really understand equality and, relatedly,
storage of data in memory. What other tests should we conduct? Predict what
results they should produce before running them!

21.2 The Cost of Evaluating References

From a complexity viewpoint, it’s important for us to understand how these refer-
ences work. As we have hinted, four-node is computed only once, and each use
of it refers to the same value: if, instead, it was evaluated each time we referred to
four-node, there would be no real difference between a-tree and b-tree, and
the above tests would not distinguish between them.

This is especially relevant when understanding the cost of function evaluation.
We’ll construct two simple examples that illustrate this. We’ll begin with a con-
trived data structure:

L = range(0, 100)

Suppose we now define

L1 = link(1, L)

L2 = link(-1, L)

Constructing a list clearly takes time at least proportional to the length; therefore,
we expect the time to compute L to be considerably more than that for a single
link operation. Therefore, the question is how long it takes to compute L1 and L2

after L has been computed: constant time, or time proportional to the length of L?
The answer, for Pyret, and for most other contemporary languages (including

Java, C#, OCaml, Racket, etc.), is that these additional computations take constant
time. That is, the value bound to L is computed once and bound to L; subsequent
expressions refer to this value (hence “reference”) rather than reconstructing it, as
reference equality shows:

check:

L1.rest is%(identical) L

L2.rest is%(identical) L

21.3. NOTATIONS FOR EQUALITY 313

L1.rest is%(identical) L2.rest

end

Similarly, we can define a function, pass L to it, and see whether the resulting
argument is identical to the original:

fun check-for-no-copy(another-l):

identical(another-l, L)

end

check:

check-for-no-copy(L) is true

end

or, equivalently,

check:

L satisfies check-for-no-copy

end

Therefore, neither built-in operations (like .rest) nor user-defined ones (like check-for-no-copy)
make copies of their arguments. The important thing to observe here is that, instead Strictly speaking, of course, we

cannot conclude that no copy
was made. Pyret could have
made a copy, discarded it, and
still passed a reference to the
original. Given how perverse
this would be, we can
assume—and take the
language’s creators’ word for
it—that this doesn’t actually
happen. By creating extremely
large lists, we can also use
timing information to observe
that the time of constructing the
list grows proportional to the
length of the list while the time
of passing it as a parameter
remains constant.

of simply relying on authority, we have used operations in the language itself to
understand how the language behaves.

21.3 Notations for Equality

Until now we have used == for equality. Now we have learned that it’s only one of
multiple equality operators, and that there is another one called identical. How-
ever, these two have somewhat subtly different syntactic properties. identical

is a name for a function, which can therefore be used to refer to it like any other
function (e.g., when we need to mention it in a is-not clause). In contrast, == is a
binary operator, which can only be used in the middle of expressions.

This should naturally make us wonder about the other two possibilities: a bi-
nary expression version of identical and a function name equivalent of ==. They
do, in fact, exist! The operation performed by == is called equal-always. There-
fore, we can write the first block of tests equivalently, but more explicitly, as

check:

a-tree is%(equal-always) b-tree

a-tree.l is%(equal-always) a-tree.l

a-tree.l is%(equal-always) a-tree.r

b-tree.l is%(equal-always) b-tree.r

314 CHAPTER 21. SHARING AND EQUALITY

end

Conversely, the binary operator notation for identical is <=>. Thus, we can
equivalently write check-for-no-copy as

fun check-for-no-copy(another-l):

another-l <=> L

end

21.4 On the Internet, Nobody Knows You’re a DAG

Despite the name we’ve given it, b-tree is not actually a tree. In a tree, by defini-
tion, there are no shared nodes, whereas in b-tree the node named by four-node

is shared by two parts of the tree. Despite this, traversing b-tree will still termi-
nate, because there are no cyclic references in it: if you start from any node and
visit its “children”, you cannot end up back at that node. There is a special name
for a value with such a shape: directed acyclic graph (DAG).

Many important data structures are actually a DAG underneath. For instance,
consider Web sites. It is common to think of a site as a tree of pages: the top-level
refers to several sections, each of which refers to sub-sections, and so on. However,
sometimes an entry needs to be cataloged under multiple sections. For instance, an
academic department might organize pages by people, teaching, and research. In
the first of these pages it lists the people who work there; in the second, the list of
courses; and in the third, the list of research groups. In turn, the courses might have
references to the people teaching them, and the research groups are populated by
these same people. Since we want only one page per person (for both maintenance
and search indexing purposes), all these personnel links refer back to the same page
for people.

Let’s construct a simple form of this. First a datatype to represent a site’s
content:

data Content:

| page(s :: String)

| section(title :: String, sub :: List<Content>)

end

Let’s now define a few people:

people-pages :: Content =

section("People",

[list: page("Church"),

page("Dijkstra"),

21.5. IT’S ALWAYS BEEN A DAG 315

page("Haberman")])

and a way to extract a particular person’s page:

fun get-person(n): get(people-pages.sub, n) end

Now we can define theory and systems sections:

theory-pages :: Content =

section("Theory",

[list: get-person(0), get-person(1)])

systems-pages :: Content =

section("Systems",

[list: get-person(1), get-person(2)])

which are integrated into a site as a whole:

site :: Content =

section("Computing Sciences",

[list: theory-pages, systems-pages])

Now we can confirm that each of these luminaries needs to keep only one Web
page current; for instance:

check:

theory = get(site.sub, 0)

systems = get(site.sub, 1)

theory-dijkstra = get(theory.sub, 1)

systems-dijkstra = get(systems.sub, 0)

theory-dijkstra is systems-dijkstra

theory-dijkstra is%(identical) systems-dijkstra

end

21.5 It’s Always Been a DAG

What we may not realize is that we’ve actually been creating a DAG for longer than
we think. To see this, consider a-tree, which very clearly seems to be a tree. But
look more closely not at the nodes but rather at the leaf(s). How many actual
leafs do we create?

One hint is that we don’t seem to call a function when creating a leaf: the
data definition does not list any fields, and when constructing a BinTree value,
we simply write leaf, not (say) leaf(). Still, it would be nice to know what is
happening behind the scenes. To check, we can simply ask Pyret:

316 CHAPTER 21. SHARING AND EQUALITY

check:

leaf is%(identical) leaf

end

and this check passes. That is, when we write a variant without any fields, PyretIt’s important that we not write
leaf <=> leaf here, because
that is just an expression whose
result is ignored. We have to
write is to register this as a test
whose result is checked and
reported.

automatically creates a singleton: it makes just one instance and uses that instance
everywhere. This leads to a more efficient memory representation, because there is
no reason to have lots of distinct leafs each taking up their own memory. However,
a subtle consequence of that is that we have been creating a DAG all along.

If we really wanted each leaf to be distinct, it’s easy: we can write

data BinTreeDistinct:

| leaf()

| node(v, l :: BinTreeDistinct, r :: BinTreeDistinct)

end

Then we would need to use the leaf function everywhere:

c-tree :: BinTreeDistinct =

node(5,

node(4, leaf(), leaf()),

node(4, leaf(), leaf()))

And sure enough:

check:

leaf() is-not%(identical) leaf()

end

21.6 From Acyclicity to Cycles

Here’s another example that arises on the Web. Suppose we are constructing a table
of output in a Web page. We would like the rows of the table to alternate between
white and grey. If the table had only two rows, we could map the row-generating
function over a list of these two colors. Since we do not know how many rows it
will have, however, we would like the list to be as long as necessary. In effect, we
would like to write:

web-colors = link("white", link("grey", web-colors))

to obtain an indefinitely long list, so that we could eventually write

map2(color-table-row, table-row-content, web-colors)

21.6. FROM ACYCLICITY TO CYCLES 317

which applies a color-table-row function to two arguments: the current row
from table-row-content, and the current color from web-colors, proceeding
in lockstep over the two lists.

Unfortunately, there are many things wrong with this attempted definition.

Do Now!

Do you see what they are?

Here are some problems in turn:

• This will not even parse. The identifier web-colors is not bound on the
right of the =.

• Earlier, we saw a solution to such a problem: use rec [section 15.3]. What
happens if we write

rec web-colors = link("white", link("grey", web-colors))

instead?

Exercise

Why does rec work in the definition of ones but not above?

• Assuming we have fixed the above problem, one of two things will happen.
It depends on what the initial value of web-colors is. Because it is a dummy
value, we do not get an arbitrarily long list of colors but rather a list of two
colors followed by the dummy value. Indeed, this program will not even
type-check.

Suppose, however, that web-colors were written instead as a function defi-
nition to delay its creation:

fun web-colors(): link("white", link("grey", web-colors())) end

On its own this just defines a function. If, however, we use it—web-colors()—
it goes into an infinite loop constructing links.

• Even if all that were to work, map2 would either (a) not terminate because its
second argument is indefinitely long, or (b) report an error because the two
arguments aren’t the same length.

318 CHAPTER 21. SHARING AND EQUALITY

All these problems are symptoms of a bigger issue. What we are trying to do here
is not merely create a shared datum (like a DAG) but something much richer: a
cyclic datum, i.e., one that refers back to itself:

When you get to cycles, even defining the datum becomes difficult because its
definition depends on itself so it (seemingly) needs to already be defined in the
process of being defined. We will return to cyclic data later: section 26.4.

Chapter 22

Graphs

In section 21.6 we introduced a special kind of sharing: when the data become
cyclic, i.e., there exist values such that traversing other reachable values from them
eventually gets you back to the value at which you began. Data that have this
characteristic are called graphs. Technically, a cycle is not

necessary to be a graph; a tree
or a DAG is also regarded as a
(degenerate) graph. In this
section, however, we are
interested in graphs that have
the potential for cycles.

Lots of very important data are graphs. For instance, the people and connec-
tions in social media form a graph: the people are nodes or vertices and the con-
nections (such as friendships) are links or edges. They form a graph because for
many people, if you follow their friends and then the friends of their friends, you
will eventually get back to the person you started with. (Most simply, this happens
when two people are each others’ friends.) The Web, similarly is a graph: the
nodes are pages and the edges are links between pages. The Internet is a graph: the
nodes are machines and the edges are links between machines. A transportation
network is a graph: e.g., cities are nodes and the edges are transportation links be-
tween them. And so on. Therefore, it is essential to understand graphs to represent
and process a great deal of interesting real-world data.

Graphs are important and interesting for not only practical but also principled
reasons. The property that a traversal can end up where it began means that tra-
ditional methods of processing will no longer work: if it blindly processes every
node it visits, it could end up in an infinite loop. Therefore, we need better struc-
tural recipes for our programs. In addition, graphs have a very rich structure, which
lends itself to several interesting computations over them. We will study both these
aspects of graphs below.

319

320 CHAPTER 22. GRAPHS

22.1 Understanding Graphs

Consider again the binary trees we saw earlier [section 21.1]. Let’s now try to
distort the definition of a “tree” by creating ones with cycles, i.e., trees with nodes
that point back to themselves (in the sense of identical). As we saw earlier
[section 21.6], it is not completely straightforward to create such a structure, but
what we saw earlier [section 15.3] can help us here, by letting us suspend the
evaluation of the cyclic link. That is, we have to not only use rec, we must also
use a function to delay evaluation. In turn, we have to update the annotations on
the fields. Since these are not going to be “trees” any more, we’ll use a name that
is suggestive but not outright incorrect:

data BinT:

| leaf

| node(v, l :: (-> BinT), r :: (-> BinT))

end

Now let’s try to construct some cyclic values. Here are a few examples:

rec tr = node("rec", lam(): tr end, lam(): tr end)

t0 = node(0, lam(): leaf end, lam(): leaf end)

t1 = node(1, lam(): t0 end, lam(): t0 end)

t2 = node(2, lam(): t1 end, lam(): t1 end)

Now let’s try to compute the size of a BinT. Here’s the obvious program:

fun sizeinf(t :: BinT) -> Number:

cases (BinT) t:

| leaf => 0

| node(v, l, r) =>

ls = sizeinf(l())

rs = sizeinf(r())

1 + ls + rs

end

end

(We’ll see why we call it sizeinf in a moment.)

Do Now!

What happens when we call sizeinf(tr)?

It goes into an infinite loop: hence the inf in its name.
There are two very different meanings for “size”. One is, “How many times can

we traverse an edge?” The other is, “How many distinct nodes were constructed as

22.1. UNDERSTANDING GRAPHS 321

part of the data structure?” With trees, by definition, these two are the same. With a
DAG the former exceeds the latter but only by a finite amount. With a general graph,
the former can exceed the latter by an infinite amount. In the case of a datum like
tr, we can in fact traverse edges an infinite number of times. But the total number
of constructed nodes is only one! Let’s write this as test cases in terms of a size

function, to be defined:

check:

size(tr) is 1

size(t0) is 1

size(t1) is 2

size(t2) is 3

end

It’s clear that we need to somehow remember what nodes we have visited pre-
viously: that is, we need a computation with “memory”. In principle this is easy:
we just create an extra data structure that checks whether a node has already been
counted. As long as we update this data structure correctly, we should be all set.
Here’s an implementation.

fun sizect(t :: BinT) -> Number:

fun szacc(shadow t :: BinT, seen :: List<BinT>) -> Number:

if has-id(seen, t):

0

else:

cases (BinT) t:

| leaf => 0

| node(v, l, r) =>

ns = link(t, seen)

ls = szacc(l(), ns)

rs = szacc(r(), ns)

1 + ls + rs

end

end

end

szacc(t, empty)

end

The extra parameter, seen, is called an accumulator, because it “accumulates”
the list of seen nodes. The support function it needs checks whether a given node Note that this could just as well

be a set; it doesn’t have to be a
list.

has already been seen:

fun has-id<A>(seen :: List<A>, t :: A):

322 CHAPTER 22. GRAPHS

cases (List) seen:

| empty => false

| link(f, r) =>

if f <=> t: true

else: has-id(r, t)

end

end

end

How does this do? Well, sizect(tr) is indeed 1, but sizect(t1) is 3 and
sizect(t2) is 7!

Do Now!

Explain why these answers came out as they did.

The fundamental problem is that we’re not doing a very good job of remem-
bering! Look at this pair of lines:

ls = szacc(l(), ns)

rs = szacc(r(), ns)

The nodes seen while traversing the left branch are effectively forgotten, because
the only nodes we remember when traversing the right branch are those in ns:
namely, the current node and those visited “higher up”. As a result, any nodes that
“cross sides” are counted twice.

The remedy for this, therefore, is to remember every node we visit. Then, when
we have no more nodes to process, instead of returning only the size, we should
return all the nodes visited until now. This ensures that nodes that have multiple
paths to them are visited on only one path, not more than once. The logic for this
is to return two values from each traversal—the size and all the visited nodes—and
not just one.

fun size(t :: BinT) -> Number:

fun szacc(shadow t :: BinT, seen :: List<BinT>)

-> {n :: Number, s :: List<BinT>}:

if has-id(seen, t):

{n: 0, s: seen}

else:

cases (BinT) t:

| leaf => {n: 0, s: seen}

| node(v, l, r) =>

ns = link(t, seen)

22.2. REPRESENTATIONS 323

ls = szacc(l(), ns)

rs = szacc(r(), ls.s)

{n: 1 + ls.n + rs.n, s: rs.s}

end

end

end

szacc(t, empty).n

end

Sure enough, this function satisfies the above tests.

22.2 Representations

The representation we’ve seen above for graphs is certainly a start towards creating
cyclic data, but it’s not very elegant. It’s both error-prone and inelegant to have to
write lam everywhere, and remember to apply functions to () to obtain the actual
values. Therefore, here we explore other representations of graphs that are more
conventional and also much simpler to manipulate.

There are numerous ways to represent graphs, and the choice of representation
depends on several factors:

1. The structure of the graph, and in particular, its density. We will discuss this
further later [section 22.3].

2. The representation in which the data are provided by external sources. Some-
times it may be easier to simply adapt to their representation; in particular,
in some cases there may not even be a choice.

3. The features provided by the programming language, which make some rep-
resentations much harder to use than others.

Previously [chapter 19], we have explored the idea of having many different rep-
resentations for one datatype. As we will see, this is very true of graphs as well.
Therefore, it would be best if we could arrive at a common interface to process
graphs, so that all later programs can be written in terms of this interface, without
overly depending on the underlying representation.

In terms of representations, there are three main things we need:

1. A way to construct graphs.

2. A way to identify (i.e., tell apart) nodes or vertices in a graph.

324 CHAPTER 22. GRAPHS

3. Given a way to identify nodes, a way to get that node’s neighbors in the
graph.

Any interface that satisfies these properties will suffice. For simplicity, we will
focus on the second and third of these and not abstract over the process of con-
structing a graph.

Our running example will be a graph whose nodes are cities in the United States
and edges are direct flight connections between them:

22.2. REPRESENTATIONS 325

Links by Name

Here’s our first representation. We will assume that every node has a unique name
(such a name, when used to look up information in a repository of data, is some-
times called a key). A node is then a key, some information about that node, and a
list of keys that refer to other nodes:

type Key = String

data KeyedNode:

| keyed-node(key :: Key, content, adj :: List<String>)

end

type KNGraph = List<KeyedNode>

type Node = KeyedNode

type Graph = KNGraph

(Here we’re assuming our keys are strings.)
Here’s a concrete instance of such a graph: The prefix kn- stands for

“keyed node”.
kn-cities :: Graph = block:

knWAS = keyed-node("was", "Washington", [list: "chi", "den", "saf", "hou", "pvd"])

knORD = keyed-node("chi", "Chicago", [list: "was", "saf", "pvd"])

knBLM = keyed-node("bmg", "Bloomington", [list:])

knHOU = keyed-node("hou", "Houston", [list: "was", "saf"])

knDEN = keyed-node("den", "Denver", [list: "was", "saf"])

knSFO = keyed-node("saf", "San Francisco", [list: "was", "den", "chi", "hou"])

knPVD = keyed-node("pvd", "Providence", [list: "was", "chi"])

[list: knWAS, knORD, knBLM, knHOU, knDEN, knSFO, knPVD]

end

Given a key, here’s how we look up its neighbor:

fun find-kn(key :: Key, graph :: Graph) -> Node:

matches = for filter(n from graph):

n.key == key

end

matches.first # there had better be exactly one!

end

326 CHAPTER 22. GRAPHS

Exercise

Convert the comment in the function into an invariant about the datum. Ex-
press this invariant as a refinement and add it to the declaration of graphs.

With this support, we can look up neighbors easily:

fun kn-neighbors(city :: Key, graph :: Graph) -> List<Key>:

city-node = find-kn(city, graph)

city-node.adj

end

When it comes to testing, some tests are easy to write. Others, however, might
require describing entire nodes, which can be unwieldy, so for the purpose of
checking our implementation it suffices to examine just a part of the result:

check:

ns = kn-neighbors("hou", kn-cities)

ns is [list: "was", "saf"]

map(_.content, map(find-kn(_, kn-cities), ns)) is

[list: "Washington", "San Francisco"]

end

Links by Indices

In some languages, it is common to use numbers as names. This is especially use-
ful when numbers can be used to get access to an element in a constant amount
of time (in return for having a bound on the number of elements that can be ac-
cessed). Here, we use a list—which does not provide constant-time access to ar-
bitrary elements—to illustrate this concept. Most of this will look very similar to
what we had before; we’ll comment on a key difference at the end.

First, the datatype:The prefix ix- stands for
“indexed”.

data IndexedNode:

| idxed-node(content, adj :: List<Number>)

end

type IXGraph = List<IndexedNode>

type Node = IndexedNode

type Graph = IXGraph

22.2. REPRESENTATIONS 327

Our graph now looks like this:

ix-cities :: Graph = block:

inWAS = idxed-node("Washington", [list: 1, 4, 5, 3, 6])

inORD = idxed-node("Chicago", [list: 0, 5, 6])

inBLM = idxed-node("Bloomington", [list:])

inHOU = idxed-node("Houston", [list: 0, 5])

inDEN = idxed-node("Denver", [list: 0, 5])

inSFO = idxed-node("San Francisco", [list: 0, 4, 3])

inPVD = idxed-node("Providence", [list: 0, 1])

[list: inWAS, inORD, inBLM, inHOU, inDEN, inSFO, inPVD]

end

where we’re assuming indices begin at 0. To find a node:

fun find-ix(idx :: Key, graph :: Graph) -> Node:

lists.get(graph, idx)

end

We can then find neighbors almost as before:

fun ix-neighbors(city :: Key, graph :: Graph) -> List<Key>:

city-node = find-ix(city, graph)

city-node.adj

end

Finally, our tests also look similar:

check:

ns = ix-neighbors(3, ix-cities)

ns is [list: 0, 5]

map(_.content, map(find-ix(_, ix-cities), ns)) is

[list: "Washington", "San Francisco"]

end

Something deeper is going on here. The keyed nodes have intrinsic keys: the
key is part of the datum itself. Thus, given just a node, we can determine its key. In
contrast, the indexed nodes represent extrinsic keys: the keys are determined out-
side the datum, and in particular by the position in some other data structure. Given
a node and not the entire graph, we cannot know for what its key is. Even given the
entire graph, we can only determine its key by using identical, which is a rather
unsatisfactory approach to recovering fundamental information. This highlights a

328 CHAPTER 22. GRAPHS

weakness of using extrinsically keyed representations of information. (In return,
extrinsically keyed representations are easier to reassemble into new collections of
data, because there is no danger of keys clashing: there are no intrinsic keys to
clash.)

A List of Edges

The representations we have seen until now have given priority to nodes, making
edges simply a part of the information in a node. We could, instead, use a represen-
tation that makes edges primary, and nodes simply be the entities that lie at their
ends:The prefix le- stands for “list

of edges”.
data Edge:

| edge(src :: String, dst :: String)

end

type LEGraph = List<Edge>

type Graph = LEGraph

Then, our flight network becomes:

le-cities :: Graph =

[list:

edge("Washington", "Chicago"),

edge("Washington", "Denver"),

edge("Washington", "San Francisco"),

edge("Washington", "Houston"),

edge("Washington", "Providence"),

edge("Chicago", "Washington"),

edge("Chicago", "San Francisco"),

edge("Chicago", "Providence"),

edge("Houston", "Washington"),

edge("Houston", "San Francisco"),

edge("Denver", "Washington"),

edge("Denver", "San Francisco"),

edge("San Francisco", "Washington"),

edge("San Francisco", "Denver"),

edge("San Francisco", "Houston"),

edge("Providence", "Washington"),

edge("Providence", "Chicago")]

22.3. MEASURING COMPLEXITY FOR GRAPHS 329

Observe that in this representation, nodes that are not connected to other nodes in
the graph simply never show up! You’d therefore need an auxilliary data structure
to keep track of all the nodes.

To obtain the set of neighbors:

fun le-neighbors(city :: Key, graph :: Graph) -> List<Key>:

neighboring-edges = for filter(e from graph):

city == e.src

end

names = for map(e from neighboring-edges): e.dst end

names

end

And to be sure:

check:

le-neighbors("Houston", le-cities) is

[list: "Washington", "San Francisco"]

end

However, this representation makes it difficult to store complex information about
a node without replicating it. Because nodes usually have rich information while
the information about edges tends to be weaker, we often prefer node-centric rep-
resentations. Of course, an alternative is to think of the node names as keys into
some other data structure from which we can retrieve rich information about nodes.

Abstracting Representations

We would like a general representation that lets us abstract over the specific im-
plementations. We will assume that broadly we have available a notion of Node
that has content, a notion of Keys (whether or not intrinsic), and a way to obtain
the neighbors—a list of keys—given a key and a graph. This is sufficient for what
follows. However, we still need to choose concrete keys to write examples and
tests. For simplicity, we’ll use string keys [section 22.2.1].

22.3 Measuring Complexity for Graphs

Before we begin to define algorithms over graphs, we should consider how to mea-
sure the size of a graph. A graph has two components: its nodes and its edges.
Some algorithms are going to focus on nodes (e.g., visiting each of them), while
others will focus on edges, and some will care about both. So which do we use as
the basis for counting operations: nodes or edges?

330 CHAPTER 22. GRAPHS

It would help if we can reduce these two measures to one. To see whether that’s
possible, suppose a graph has : nodes. Then its number of edges has a wide range,
with these two extremes:

• No two nodes are connected. Then there are no edges at all.

• Every two nodes is connected. Then there are essentially as many edges as
the number of pairs of nodes.

The number of nodes can thus be significantly less or even significantly more than
the number of edges. Were this difference a matter of constants, we could have
ignored it; but it’s not. As a graph tends towards the former extreme, the ratio of
nodes to edges approaches : (or even exceeds it, in the odd case where there are
no edges, but this graph is not very interesting); as it tends towards the latter, it
is the ratio of edges to nodes that approaches :2. In other words, neither measure
subsumes the other by a constant independent of the graph.

Therefore, when we want to speak of the complexity of algorithms over graphs,
we have to consider the sizes of both the number of nodes and edges. In a connected
graph, however, there must be at least as many edges as nodes, which means theA graph is connected if, from

every node, we can traverse
edges to get to every other node.

number of edges dominates the number of nodes. Since we are usually processing
connected graphs, or connected parts of graphs one at a time, we can bound the
number of nodes by the number of edges.

22.4 Reachability

Many uses of graphs need to address reachability: whether we can, using edges
in the graph, get from one node to another. For instance, a social network might
suggest as contacts all those who are reachable from existing contacts. On the
Internet, traffic engineers care about whether packets can get from one machine to
another. On the Web, we care about whether all public pages on a site are reachable
from the home page. We will study how to compute reachability using our travel
graph as a running example.

Simple Recursion

At its simplest, reachability is easy. We want to know whether there exists a pathA path is a sequence of zero or
more linked edges. between a pair of nodes, a source and a destination. (A more sophisticated version

of reachability might compute the actual path, but we’ll ignore this for now.) There
are two possibilities: the source and destintion nodes are the same, or they’re not.

• If they are the same, then clearly reachability is trivially satisfied.

22.4. REACHABILITY 331

• If they are not, we have to iterate through the neighbors of the source node
and ask whether the destination is reachable from each of those neighbors.

This translates into the following function:
<graph-reach-1-main> ::=

fun reach-1(src :: Key, dst :: Key, g :: Graph) -> Boolean:

if src == dst:

true

else:

<graph-reach-1-loop>

loop(neighbors(src, g))

end

end

where the loop through the neighbors of src is:
<graph-reach-1-loop> ::=

fun loop(ns):

cases (List) ns:

| empty => false

| link(f, r) =>

if reach-1(f, dst, g): true else: loop(r) end

end

end

We can test this as follows:
<graph-reach-tests> ::=

check:

reach = reach-1

reach("was", "was", kn-cities) is true

reach("was", "chi", kn-cities) is true

reach("was", "bmg", kn-cities) is false

reach("was", "hou", kn-cities) is true

reach("was", "den", kn-cities) is true

reach("was", "saf", kn-cities) is true

end

Unfortunately, we don’t find out about how these tests fare, because some of them
don’t complete at all. That’s because we have an infinite loop, due to the cyclic
nature of graphs!

332 CHAPTER 22. GRAPHS

Exercise

Which of the above examples leads to a cycle? Why?

Cleaning up the Loop

Before we continue, let’s try to improve the expression of the loop. While the
nested function above is a perfectly reasonable definition, we can use Pyret’s for
to improve its readability.

The essence of the above loop is to iterate over a list of boolean values; if one
of them is true, the entire loop evaluates to true; if they are all false, then we haven’t
found a path to the destination node, so the loop evaluates to false. Thus:

fun ormap(fun-body, l):

cases (List) l:

| empty => false

| link(f, r) =>

if fun-body(f): true else: ormap(fun-body, r) end

end

end

With this, we can replace the loop definition and use with:

for ormap(n from neighbors(src, g)):

reach-1(n, dst, g)

end

Traversal with Memory

Because we have cyclic data, we have to remember what nodes we’ve already
visited and avoid traversing them again. Then, every time we begin traversing a
new node, we add it to the set of nodes we’ve already started to visit so that. If
we return to that node, because we can assume the graph has not changed in the
meanwhile, we know that additional traversals from that node won’t make any
difference to the outcome.This property is known as

Nidempotence. We therefore define a second attempt at reachability that take an extra argu-
ment: the set of nodes we have begun visiting (where the set is represented as a
graph). The key difference from <graph-reach-1-main> is, before we begin to
traverse edges, we should check whether we’ve begun processing the node or not.
This results in the following definition:
<graph-reach-2> ::=

22.4. REACHABILITY 333

fun reach-2(src :: Key, dst :: Key, g :: Graph, visited :: List<Key>) -> Boolean:

if visited.member(src):

false

else if src == dst:

true

else:

new-visited = link(src, visited)

for ormap(n from neighbors(src, g)):

reach-2(n, dst, g, new-visited)

end

end

end

In particular, note the extra new conditional: if the reachability check has already
visited this node before, there is no point traversing further from here, so it re-
turns false. (There may still be other parts of the graph to explore, which other
recursive calls will do.)

Exercise

Does it matter if the first two conditions were swapped, i.e., the beginning of
reach-2 began with

if src == dst:

true

else if visited.member(src):

false

? Explain concretely with examples.

Exercise

We repeatedly talk about remembering the nodes that we have begun to visit,
not the ones we’ve finished visiting. Does this distinction matter? How?

A Better Interface

As the process of testing reach-2 shows, we may have a better implementation,
but we’ve changed the function’s interface; now it has a needless extra argument,
which is not only a nuisance but might also result in errors if we accidentally mis-
use it. Therefore, we should clean up our definition by moving the core code to an
internal function:

334 CHAPTER 22. GRAPHS

fun reach-3(s :: Key, d :: Key, g :: Graph) -> Boolean:

fun reacher(src :: Key, dst :: Key, visited :: List<Key>) -> Boolean:

if visited.member(src):

false

else if src == dst:

true

else:

new-visited = link(src, visited)

for ormap(n from neighbors(src, g)):

reacher(n, dst, new-visited)

end

end

end

reacher(s, d, empty)

end

We have now restored the original interface while correctly implementing reacha-
bility.

Exercise

Does this really gives us a correct implementation? In particular, does this
address the problem that the size function above addressed? Create a test
case that demonstrates the problem, and then fix it.

22.5 Depth- and Breadth-First Traversals
It is conventional for computer
science texts to call these depth-
and breadth-first search.
However, searching is just a
specific purpose; traversal is a
general task that can be used for
many purposes.

The reachability algorithm we have seen above has a special property. At every
node it visits, there is usually a set of adjacent nodes at which it can continue the
traversal. It has at least two choices: it can either visit each immediate neighbor
first, then visit all of the neighbors’ neighbors; or it can choose a neighbor, recur,
and visit the next immediate neighbor only after that visit is done. The former is
known as breadth-first traversal, while the latter is depth-first traversal.

The algorithm we have designed uses a depth-first strategy: inside <graph-
reach-1-loop>, we recur on the first element of the list of neighbors before we visit
the second neighbor, and so on. The alternative would be to have a data structure
into which we insert all the neighbors, then pull out an element at a time such that
we first visit all the neighbors before their neighbors, and so on. This naturally
corresponds to a queue [section 20.3].

22.6. GRAPHS WITH WEIGHTED EDGES 335

Exercise

Using a queue, implement breadth-first traversal.

If we correctly check to ensure we don’t re-visit nodes, then both breadth- and
depth-first traversal will properly visit the entire reachable graph without repetition
(and hence not get into an infinite loop). Each one traverses from a node only once,
from which it considers every single edge. Thus, if a graph has # nodes and �
edges, then a lower-bound on the complexity of traversal is $ ([#, � → # + �]).
We must also consider the cost of checking whether we have already visited a
node before (which is a set membership problem, which we address elsewhere:
section 19.2). Finally, we have to consider the cost of maintaining the data structure
that keeps track of our traversal. In the case of depth-first traversal, recursion—
which uses the machine’s stack—does it automatically at constant overhead. In the
case of breadth-first traversal, the program must manage the queue, which can add
more than constant overhead. In practice, too, the stack will

usually perform much better
than a queue, because it is
supported by machine
hardware.

This would suggest that depth-first traversal is always better than breadth-first
traversal. However, breadth-first traversal has one very important and valuable
property. Starting from a node # , when it visits a node %, count the number of
edges taken to get to %. Breadth-first traversal guarantees that there cannot have
been a shorter path to %: that is, it finds a shortest path to %.

Exercise

Why “a” rather than “the” shortest path?

Do Now!

Prove that breadth-first traversal finds a shortest path.

22.6 Graphs With Weighted Edges

Consider a transportation graph: we are usually interested not only in whether
we can get from one place to another, but also in what it “costs” (where we may
have many different cost measures: money, distance, time, units of carbon dioxide,

etc.). On the Internet, we might care about theNlatency orNbandwidth over
a link. Even in a social network, we might like to describe the degree of closeness
of a friend. In short, in many graphs we are interested not only in the direction of
an edge but also in some abstract numeric measure, which we call its weight.

336 CHAPTER 22. GRAPHS

In the rest of this study, we will assume that our graph edges have weights.
This does not invalidate what we’ve studied so far: if a node is reachable in an
unweighted graph, it remains reachable in a weighted one. But the operations we
are going to study below only make sense in a weighted graph.We can, however, always treat

an unweighted graph as a
weighted one by giving every
edge the same, constant,
positive weight (say one).

Exercise

When treating an unweighted graph as a weighted one, why do we care that
every edge be given a positive weight?

Exercise

Revise the graph data definitions to account for edge weights.

Exercise

Weights are not the only kind of data we might record about edges. For
instance, if the nodes in a graph represent people, the edges might be labeled
with their relationship (“mother”, “friend”, etc.). What other kinds of data
can you imagine recording for edges?

22.7 Shortest (or Lightest) Paths

Imagine planning a trip: it’s natural that you might want to get to your destina-
tion in the least time, or for the least money, or some other criterion that involves
minimizing the sum of edge weights. This is known as computing the shortest path.

We should immediately clarify an unfortunate terminological confusion. What
we really want to compute is the lightest path—the one of least weight. Unfortu-
nately, computer science terminology has settled on the terminology we use here;
just be sure to not take it literally.

Exercise

Construct a graph and select a pair of nodes in it such that the shortest path
from one to the other is not the lightest one, and vice versa.

We have already seen [section 22.5] that breadth-first search constructs shortest
paths in unweighted graphs. These correspond to lightest paths when there are no
weights (or, equivalently, all weights are identical and positive). Now we have to
generalize this to the case where the edges have weights.

We will proceed inductively, gradually defining a function seemingly of this
type

22.7. SHORTEST (OR LIGHTEST) PATHS 337

w :: Key -> Number

that reflects the weight of the lightest path from the source node to that one. But
let’s think about this annotation: since we’re building this up node-by-node, ini-
tially most nodes have no weight to report; and even at the end, a node that is
unreachable from the source will have no weight for a lightest (or indeed, any)
path. Rather than make up a number that pretends to reflect this situation, we will
instead use an option type:

w :: Key -> Option<Number>

When there is some value it will be the weight; otherwise the weight will be none.
Now let’s think about this inductively. What do we know initially? Well,

certainly that the source node is at a distance of zero from itself (that must be
the lightest path, because we can’t get any lighter). This gives us a (trivial) set of
nodes for which we already know the lightest weight. Our goal is to grow this set of
nodes—modestly, by one, on each iteration—until we either find the destination,
or we have no more nodes to add (in which case our desination is not reachable
from the source).

Inductively, at each step we have the set of all nodes for which we know the
lightest path (initially this is just the source node, but it does mean this set is never
empty, which will matter in what we say next). Now consider all the edges adjacent
to this set of nodes that lead to nodes for which we don’t already know the lightest
path. Choose a node, @, that minimizes the total weight of the path to it. We claim
that this will in fact be the lightest path to that node.

If this claim is true, then we are done. That’s because we would now add @
to the set of nodes whose lightest weights we now know, and repeat the process
of finding lightest outgoing edges from there. This process has thus added one
more node. At some point we will find that there are no edges that lead outside the
known set, at which point we can terminate.

It stands to reason that terminating at this point is safe: it corresponds to having
computed the reachable set. The only thing left is to demonstrate that this greedy
algorithm yields a lightest path to each node.

We will prove this by contradiction. Suppose we have the path B → 3 from
source B to node 3, as found by the algorithm above, but assume also that we have
a different path that is actually lighter. At every node, when we added a node along
the B → 3 path, the algorithm would have added a lighter path if it existed. The
fact that it did not falsifies our claim that a lighter path exists (there could be a
different path of the same weight; this would be permitted by the algorithm, but
it also doesn’t contradict our claim). Therefore the algorithm does indeed find the
lightest path.

338 CHAPTER 22. GRAPHS

What remains is to determine a data structure that enables this algorithm. At
every node, we want to know the least weight from the set of nodes for which we
know the least weight to all their neighbors. We could achieve this by sorting, but
this is overkill: we don’t actually need a total ordering on all these weights, only
the lightest one. A heap see Wikipedia gives us this.

Exercise

What if we allowed edges of weight zero? What would change in the above
algorithm?

Exercise

What if we allowed edges of negative weight? What would change in the
above algorithm?

For your reference, this algorithm is known as Dijkstra’s Algorithm.

22.8 Moravian Spanning Trees

At the turn of the milennium, the US National Academy of Engineering surveyed
its members to determine the “Greatest Engineering Achievements of the 20th Cen-
tury”. The list contained the usual suspects: electronics, computers, the Internet,
and so on. But a perhaps surprising idea topped the list: (rural) electrification.Read more about it on their site.

The Problem

To understand the history of national electrical grids, it helps to go back to Moravia
in the 1920s. Like many parts of the world, it was beginning to realize the benefits
of electricity and intended to spread it around the region. A Moravian academia
named Otakar Borůvka heard about the problem, and in a remarkable effort, de-
scribed the problem abstractly, so that it could be understood without reference to
Moravia or electrical networks. He modeled it as a problem about graphs.

Borůvka observed that at least initially, any solution to the problem of creating
a network must have the following characteristics:

• The electrical network must reach all the towns intended to be covered by it.
In graph terms, the solution must be spanning, meaning it must visit every
node in the graph.

https://en.wikipedia.org/wiki/Heap_(data_structure)
http://www.greatachievements.org/
http://en.wikipedia.org/wiki/Moravia

22.8. MORAVIAN SPANNING TREES 339

• Redundancy is a valuable property in any network: that way, if one set of
links goes down, there might be another way to get a payload to its destina-
tion. When starting out, however, redundancy may be too expensive, espe-
cially if it comes at the cost of not giving someone a payload at all. Thus,
the initial solution was best set up without loops or even redundant paths. In
graph terms, the solution had to be a tree.

• Finally, the goal was to solve this problem for the least cost possible. In
graph terms, the graph would be weighted, and the solution had to be a
minimum.

Thus Borůvka defined the Moravian Spanning Tree (MST) problem.

A Greedy Solution

Borůvka had published his problem, and another Czech mathematician, Vojtěch
Jarník, came across it. Jarník came up with a solution that should sound familiar:

• Begin with a solution consisting of a single node, chosen arbitrarily. For
the graph consisting of this one node, this solution is clearly a minimum,
spanning, and a tree.

• Of all the edges incident on nodes in the solution that connect to a node not
already in the solution, pick the edge with the least weight. Note that we consider only the

incident edges, not their weight
added to the weight of the node
to which they are incident.

• Add this edge to the solution. The claim is that for the new solution will be
a tree (by construction), spanning (also by construction), and a minimum.
The minimality follows by an argument similar to that used for Dijkstra’s
Algorithm.

Jarník had the misfortune of publishing this work in Czech in 1930, and it
went largely ignored. It was rediscovered by others, most notably by R.C. Prim in
1957, and is now generally known as Prim’s Algorithm, though calling it Jarník’s
Algorithm would attribute credit in the right place.

Implementing this algorithm is pretty easy. At each point, we need to know the
lightest edge incident on the current solution tree. Finding the lightest edge takes
time linear in the number of these edges, but the very lightest one may create a cy-
cle. We therefore need to efficiently check for whether adding an edge would create
a cycle, a problem we will return to multiple times [section 22.8.5]. Assuming we
can do that effectively, we then want to add the lightest edge and iterate. Even
given an efficient solution for checking cyclicity, this would seem to require an
operation linear in the number of edges for each node. With better representations
we can improve on this complexity, but let’s look at other ideas first.

http://en.wikipedia.org/wiki/Vojt%C4%9Bch_Jarn%C3%ADk
http://en.wikipedia.org/wiki/Vojt%C4%9Bch_Jarn%C3%ADk

340 CHAPTER 22. GRAPHS

Another Greedy Solution

Recall that Jarník presented his algorithm in 1930, when computers didn’t exist,
and Prim his in 1957, when they were very much in their infancy. Programming
computers to track heaps was a non-trivial problem, and many algorithms were
implemented by hand, where keeping track of a complex data structure without
making errors was harder still. There was need for a solution that was required less
manual bookkeeping (literally speaking).

In 1956, Joseph Kruskal presented such a solution. His idea was elegantly
simple. The Jarník algorithm suffers from the problem that each time the tree
grows, we have to revise the content of the heap, which is already a messy structure
to track. Kruskal noted the following.

To obtain a minimum solution, surely we want to include one of the edges
of least weight in the graph. Because if not, we can take an otherwise minimal
solution, add this edge, and remove one other edge; the graph would still be just as
connected, but the overall weight would be no more and, if the removed edge were
heavier, would be less. By the same argument we can add the next lightest edge,Note the careful wording: there

may be many edges of the same
least weight, so adding one of
them may remove another, and
therefore not produce a lighter
tree; but the key point is that it
certainly will not produce a
heavier one.

and the next lightest, and so on. The only time we cannot add the next lightest edge
is when it would create a cycle (that problem again!).

Therefore, Kruskal’s algorithm is utterly straightforward. We first sort all the
edges, ordered by ascending weight. We then take each edge in ascending weight
order and add it to the solution provided it will not create a cycle. When we have
thus processed all the edges, we will have a solution that is a tree (by construction),
spanning (because every connected vertex must be the endpoint of some edge), and
of minimum weight (by the argument above). The complexity is that of sorting
(which is [4 → 4 log 4] where 4 is the size of the edge set. We then iterate over
each element in 4, which takes time linear in the size of that set—modulo the time
to check for cycles. This algorithm is also easy to implement on paper, because we
sort all the edges once, then keep checking them off in order, crossing out the ones
that create cycles—with no dynamic updating of the list needed.

A Third Solution

Both the Jarník and Kruskal solutions have one flaw: they require a centralized data
structure (the priority heap, or the sorted list) to incrementally build the solution.
As parallel computers became available, and graph problems grew large, com-
puter scientists looked for solutions that could be implemented more efficiently in
parallel—which typically meant avoiding any centralized points of synchroniza-
tion, such as these centralized data structures.

In 1965, M. Sollin constructed an algorithm that met these needs beautifully.

http://en.wikipedia.org/wiki/Joseph_Kruskal

22.8. MORAVIAN SPANNING TREES 341

In this algorithm, instead of constructing a single solution, we grow multiple solu-
tion components (potentially in parallel if we so wish). Each node starts out as a
solution component (as it was at the first step of Jarník’s Algorithm). Each node
considers the edges incident to it, and picks the lightest one that connects to a dif-
ferent component (that problem again!). If such an edge can be found, the edge
becomes part of the solution, and the two components combine to become a single
component. The entire process repeats.

Because every node begins as part of the solution, this algorithm naturally
spans. Because it checks for cycles and avoids them, it naturally forms a tree. Note that avoiding cycles yields

a DAG and is not automatically
guaranteed to yield a tree. We
have been a bit lax about this
difference throughout this
section.

Finally, minimality follows through similar reasoning as we used in the case of
Jarník’s Algorithm, which we have essentially run in parallel, once from each node,
until the parallel solution components join up to produce a global solution.

Of course, maintaining the data for this algorithm by hand is a nightmare.
Therefore, it would be no surprise that this algorithm was coined in the digital
age. The real surprise, therefore, is that it was not: it was originally created by
Otakar Borůvka himself.

Borůvka, you see, had figured it all out. He’d not only understood the problem,
he had:

• pinpointed the real problem lying underneath the electrification problem so
it could be viewed in a context-independent way,

• created a descriptive language of graph theory to define it precisely, and

• even solved the problem in addition to defining it.

He’d just come up with a solution so complex to implement by hand that Jarník
had in essence de-parallelized it so it could be done sequentially. And thus this
algorithm lay unnoticed until it was reinvented (several times, actually) by Sollin
in time for parallel computing folks to notice a need for it. But now we can just
call this Borůvka’s Algorithm, which is only fitting.

As you might have guessed by now, this problem is indeed called the MST in
other textbooks, but “M” stands not for Moravia but for “Minimum”. But given
Borůvka’s forgotten place in history, we prefer the more whimsical name.

Checking Component Connectedness

As we’ve seen, we need to be able to efficiently tell whether two nodes are in
the same component. One way to do this is to conduct a depth-first traversal (or
breadth-first traversal) starting from the first node and checking whether we ever
visit the second one. (Using one of these traversal strategies ensures that we ter-
minate in the presence of loops.) Unfortunately, this takes a linear amount of time

http://en.wikipedia.org/wiki/Otakar_Bor%C5%AFvka
http://en.wikipedia.org/wiki/Bor%C5%AFvka's_algorithm

342 CHAPTER 22. GRAPHS

(in the size of the graph) for every pair of nodes—and depending on the graph
and choice of node, we might do this for every node in the graph on every edge
addition! So we’d clearly like to do this better.

It is helpful to reduce this problem from graph connectivity to a more general
one: of disjoint-set structure (colloquially known as union-find for reasons that
will soon be clear). If we think of each connected component as a set, then we’re
asking whether two nodes are in the same set. But casting it as a set membership
problem makes it applicable in several other applications as well.

The setup is as follows. For arbitrary values, we want the ability to think of
them as elements in a set. We are interested in two operations. One is obviously
union, which merges two sets into one. The other would seem to be something
like is-in-same-set that takes two elements and determines whether they’re in
the same set. Over time, however, it has proven useful to instead define the operator
find that, given an element, “names” the set (more on this in a moment) that the
element belongs to. To check whether two elements are in the same set, we then
have to get the “set name” for each element, and check whether these names are the
same. This certainly sounds more roundabout, but this means we have a primitive
that may be useful in other contexts, and from which we can easily implement
is-in-same-set.

Now the question is, how do we name sets? The real question we should ask is,
what operations do we care to perform on these names? All we care about is, given
two names, they represent the same set precisely when the names are the same.
Therefore, we could construct a new string, or number, or something else, but we
have another option: simply pick some element of the set to represent it, i.e., to
serve as its name. Thus we will associate each set element with an indicator of the
“set name” for that element; if there isn’t one, then its name is itself (the none case
of parent):

data Element<T>:

| elt(val :: T, parent :: Option<Element>)

end

We will assume we have some equality predicate for checking when two elements
are the same, which we do by comparing their value parts, ignoring their parent
values:

fun is-same-element(e1, e2): e1.val <=> e2.val end

Do Now!

Why do we check only the value parts?

22.8. MORAVIAN SPANNING TREES 343

We will assume that for a given set, we always return the same representative
element. (Otherwise, equality will fail even though we have the same set.) Thus: We’ve used the name fynd

because find is already defined
to mean something else in
Pyret. If you don’t like the
misspelling, you’re welcome to
use a longer name like
find-root.

fun is-in-same-set(e1 :: Element, e2 :: Element, s :: Sets)

-> Boolean:

s1 = fynd(e1, s)

s2 = fynd(e2, s)

identical(s1, s2)

end

where Sets is the list of all elements:

type Sets = List<Element>

How do we find the representative element for a set? We first find it using
is-same-element; when we do, we check the element’s parent field. If it is
none, that means this very element names its set; this can happen either because the
element is a singleton set (we’ll initialize all elements with none), or it’s the name
for some larger set. Either way, we’re done. Otherwise, we have to recursively find
the parent:

fun fynd(e :: Element, s :: Sets) -> Element:

cases (List) s:

| empty => raise("fynd: shouldn’t have gotten here")

| link(f, r) =>

if is-same-element(f, e):

cases (Option) f.parent:

| none => f

| some(p) => fynd(p, s)

end

else:

fynd(e, r)

end

end

end

Exercise

Why is there a recursive call in the nested cases?

What’s left is to implement union. For this, we find the representative elements
of the two sets we’re trying to union; if they are the same, then the two sets are
already in a union; otherwise, we have to update the data structure:

344 CHAPTER 22. GRAPHS

fun union(e1 :: Element, e2 :: Element, s :: Sets) -> Sets:

s1 = fynd(e1, s)

s2 = fynd(e2, s)

if identical(s1, s2):

s

else:

update-set-with(s, s1, s2)

end

end

To update, we arbitrarily choose one of the set names to be the name of the new
compound set. We then have to update the parent of the other set’s name element
to be this one:

fun update-set-with(s :: Sets, child :: Element, parent :: Element)

-> Sets:

cases (List) s:

| empty => raise("update: shouldn’t have gotten here")

| link(f, r) =>

if is-same-element(f, child):

link(elt(f.val, some(parent)), r)

else:

link(f, update-set-with(r, child, parent))

end

end

end

Here are some tests to illustrate this working:

check:

s0 = map(elt(_, none), [list: 0, 1, 2, 3, 4, 5, 6, 7])

s1 = union(get(s0, 0), get(s0, 2), s0)

s2 = union(get(s1, 0), get(s1, 3), s1)

s3 = union(get(s2, 3), get(s2, 5), s2)

print(s3)

is-same-element(fynd(get(s0, 0), s3), fynd(get(s0, 5), s3)) is true

is-same-element(fynd(get(s0, 2), s3), fynd(get(s0, 5), s3)) is true

is-same-element(fynd(get(s0, 3), s3), fynd(get(s0, 5), s3)) is true

is-same-element(fynd(get(s0, 5), s3), fynd(get(s0, 5), s3)) is true

is-same-element(fynd(get(s0, 7), s3), fynd(get(s0, 7), s3)) is true

end

Unfortunately, this implementation suffers from two major problems:

22.8. MORAVIAN SPANNING TREES 345

• First, because we are performing functional updates, the value of the parent
reference keeps “changing”, but these changes are not visible to older copies
of the “same” value. An element from different stages of unioning has differ-
ent parent references, even though it is arguably the same element through-
out. This is a place where functional programming hurts.

• Relatedly, the performance of this implementation is quite bad. fynd recur-
sively traverses parents to find the set’s name, but the elements traversed are
not updated to record this new name. We certainly could update them by
reconstructing the set afresh each time, but that complicates the implemen-
tation and, as we will soon see, we can do much better.

Even worse, it may not even be correct!

Exercise

Is it? Consider constructing unions that are not quite so skewed as above,
and see whether you get the results you expect.

The bottom line is that pure functional programming is not a great fit with this
problem. We need a better implementation strategy: section 28.1.

346 CHAPTER 22. GRAPHS

Part IV

From Pyret to Python

347

Chapter 23

From Pyret to Python

Through our work in Pyret to this point, we’ve covered several core programming
skills: how to work with tables, how to design good examples, the basics of cre-
ating datatypes, and how to work with the fundamental computational building
blocks of functions, conditionals, and repetition (through filter and map, as well
as recursion). You’ve got a solid initial toolkit, as well as a wide world of other
possible programs ahead of you!

But we’re going to shift gears for a little while and show you how to work in
Python instead. Why?

Seeing how the same concepts play out in multiple languages can help you
distinguish core computational ideas from the notations and idioms of specific lan-
guages. If you plan to write programs as part of your professional work, you’ll
inevitably have to work in different languages at different times: we’re giving you
a chance to practice that skill in a controlled and gentle setting.

Why do we call this gentle? Because the notations in Pyret were designed
partly with this transition in mind. You’ll find many similarities between Pyret and
Python at a notational level, yet also some interesting differences that highlight
some philosophical differences that underlie languages. The next set of programs
that we want to write (specifically, data-rich programs where the data must be
updated and maintained over time) fit nicely with certain features of Python that
you haven’t seen in Pyret. A future release will contain

material that contrasts the
strengths and weaknesses of the
two languages.

We highlight the basic notational differences between Pyret and Python by
redoing some of our earlier code examples in Python.

349

350 CHAPTER 23. FROM PYRET TO PYTHON

23.1 Expressions, Functions, and Types

Back in section 5.5, we introduced the notation for functions and types using an
example of computing the cost of an order of pens. An order consisted of a number
of pens and a message to be printed on the pens. Each pen cost 25 cents, plus 2
cents per character for the message. Here was the original Pyret code:

fun pen-cost(num-pens :: Number, message :: String) -> Number:

doc: ‘‘‘total cost for pens, each 25 cents

plus 2 cents per message character‘‘‘

num-pens * (0.25 + (string-length(message) * 0.02))

end

Here’s the corresponding Python code:

def pen_cost(num_pens: int, message: str) -> float:

"""total cost for pens, each at 25 cents plus

2 cents per message character"""

return num_pens * (0.25 + (len(message) * 0.02))

Do Now!

What notational differences do you see between the two versions?

Here’s a summary of the differences:

• Python uses def instead of fun.

• Python uses underscores in names (like pen_cost) instead of hyphens as in
Pyret.

• The type names are written differently: Python uses str and int instead of
String and Number. In addition, Python uses only a single colon before the
type whereas Pyret uses a double colon.

• Python has different types for different kinds of numbers: int is for integers,
while float is for decimals. Pyret just used a single type (Number) for all
numbers.

• Python doesn’t label the documentation string (as Pyret does with doc:).

• There is no end annotation in Python. Instead, Python uses indentation to
locate the end of an if/else statement, function, or other multi-line construct
finishes.

23.2. RETURNING VALUES FROM FUNCTIONS 351

• Python labels the outputs of functions with return.

These are minor differences in notation, which you will get used to as you write
more programs in Python.

There are differences beyond the notational ones. One that arises with this
sample program arises around how the language uses types. In Pyret, if you put a
type annotation on a parameter then pass it a value of a different type, you’ll get an
error message. Python ignores the type annotations (unless you bring in additional
tools for checking types). Pyret types are like notes for programmers, but they
aren’t enforced when programs run.

Exercise

Convert the following moon-weight function from section 5.3 into Python:

fun moon-weight(earth-weight :: Number) -> Number:

doc:" Compute weight on moon from weight on earth"

earth-weight * 1/6

end

23.2 Returning Values from Functions

In Pyret, a function body consisted of optional statements to name intermediate
values, followed by a single expression. The value of that single expression is the
result of calling the function. In Pyret, every function produces a result, so there is
no need to label where the result comes from.

As we will see, Python is different: not all “functions” return results (note the
name change from fun to def). Moreover, the result isn’t necessarily the last ex- In mathematics, functions have

results by definition.
Programmers sometimes
distinguish between the terms
“function” and “procedure”:
both refer to parameterized
computations, but only the
former returns a result to the
surrounding computation.
Some programmers and
languages do, however, use the
term “function” more loosely to
cover both kinds of
parameterized computations.

pression of the def. In Python, the keyword return explicitly labels the expression
whose value serves as the result of the function.

Do Now!

Put these two definitions in a Python file.

def add1v1(x: int) -> int:

return x + 1

def add1v2(x: int) -> int:

x + 1

At the Python prompt, call each function in turn. What do you notice
about the result from using each function?

352 CHAPTER 23. FROM PYRET TO PYTHON

Hopefully, you noticed that using add1v1 displays an answer after the prompt,
while using add1v2 does not. This difference has consequences for composing
functions.

Do Now!

Try evaluating the following two expressions at the Python prompt: what
happens in each case?

3 * add1v1(4)

3 * add1v2(4)

This example illustrates why return is essential in Python: without it, no
value is returned, which means you can’t use the result of a function within another
expression. So what use is add1v2 then? Hold that question; we’ll return to it in
chapter 25.

23.3 Examples and Test Cases

In Pyret, we included examples with every function using where: blocks. We also
had the ability to write check: blocks for more extensive tests. As a reminder, here
was the pen-cost code including a where: block:

fun pen-cost(num-pens :: Number, message :: String) -> Number:

doc: ‘‘‘total cost for pens, each 25 cents

plus 2 cents per message character‘‘‘

num-pens * (0.25 + (string-length(message) * 0.02))

where:

pen-cost(1, "hi") is 0.29

pen-cost(10, "smile") is 3.50

end

Python does not have a notion of where: blocks, or a distinction between ex-
amples and tests. There are a couple of different testing packages for Python; here
we will use pytest, a standard lightweight framework that resembles the form of
testing that we did in Pyret. To use pytest, we put both examples and tests in aHow you set up pytest and your

test file contents will vary
according to your Python IDE.
We assume instructors will
provide separate instructions
that align with their tool
choices.

separate function. Here’s an example of this for the pen_cost function:

import pytest

def pen_cost(num_pens: int, message: str) -> float:

"""total cost for pens, each at 25 cents plus

2 cents per message character"""

23.4. AN ASIDE ON NUMBERS 353

return num_pens * (0.25 + (len(message) * 0.02))

def test_pens():

assert pen_cost(1, "hi") == 0.29

assert pen_cost(10, "smile") == 3.50

Things to note about this code:

• We’ve imported pytest, the lightweight Python testing library.

• The examples have moved into a function (here test_pens) that takes no
inputs. Note that the names of functions that contain test cases must have
names that start with test_ in order for pytest to find them.

• In Python, individual tests have the form

assert EXPRESSION == EXPECTED_ANS

rather than the is form from Pyret.

Do Now!

Add one more test to the Python code, corresponding to the Pyret test

pen-cost(3, "wow") is 0.93

Make sure to run the test.

Do Now!

Did you actually try to run the test?

Whoa! Something weird happened: the test failed. Stop and think about that:
the same test that worked in Pyret failed in Python. How can that be?

23.4 An Aside on Numbers

It turns out that different programming languages make different decisions about
how to represent and manage real (non-integer) numbers. Sometimes, differences
in these representations lead to subtle quantitative differences in computed values.
As a simple example, let’s look at two seemingly simple real numbers 1/2 and
1/3. Here’s what we get when we type these two numbers at a Pyret prompt:

354 CHAPTER 23. FROM PYRET TO PYTHON

››› 1/2

0.5

››› 1/3

0.3

If we type these same two numbers in a Python console, we instead get:

››› 1/2

0.5

››› 1/3

0.3333333333333333

Notice that the answers look different for 1/3. As you may (or may not!)
recall from an earlier math class, 1/3 is an example of a non-terminating, repeating
decimal. In plain terms, if we tried to write out the exact value of 1/3 in decimal
form, we would need to write an infinite sequence of 3. Mathematicians denote
this by putting a horizontal bar over the 3. This is the notation we see in Pyret.
Python, in contrast, writes out a partial sequence of 3s.

Underneath this distinction lies some interesting details about representing
numbers in computers. Computers don’t have infinite space to store numbers
(or anything else, for that matter): when a program needs to work with a non-
terminating decimal, the underlying language can either:

• approximate the number (by chopping off the infinite sequence of digits at
some point), then work only with the approximated value going forward, or

• store additional information about the number that may enable doing more
precise computation with it later (though there are always some numbers that
cannot be represented exactly in finite space).

Python takes the first approach. As a result, computations with the approxi-
mated values sometimes yield approximated results. This is what happens with
our new pen_cost test case. While mathematically, the computation should result
in 0.93, the approximations yield 0.9299999999999999 instead.

23.5. CONDITIONALS 355

So how do we write tests in this situation? We need to tell Python that the
answer should be “close” to 0.93, within the error range of approximations. Here’s
what that looks like:

assert pen_cost(3, "wow") == pytest.approx(0.93)

We wrapped the exact answer we wanted in pytest.approx, to indicate that we’ll
accept any answer that is nearly the value we specified. You can control the number
of decimal points of precision if you want to, but the default of ± 2.3e-06 often
suffices.

23.5 Conditionals

Continuing with our original pen_cost example, here’s the Python version of the
function that computed shipping costs on an order:

def add_shipping(order_amt: float) -> float:

"""increase order price by costs for shipping"""

if order_amt == 0:

return 0

elif order_amt <= 10:

return order_amt + 4

elif (order_amt > 10) and (order_amt < 30):

return order_amt + 8

else:

return order_amt + 12

The main difference to notice here is that else if is written as the single-word
elif in Python. We use return to mark the function’s results in each branch of
the conditional. Otherwise, the conditional constructs are quite similar across the
two languages.

You may have noticed that Python does not require an explicit end annotation
on if-expressions or functions. Instead, Python looks at the indentation of your
code to determine when a construct has ended. For example, in the code sample
for pen_cost and test_pens, Python determines that the pen_cost function has
ended because it detects a new definition (for test_pens) at the left edge of the
program text. The same principle holds for ending conditionals.

We’ll return to this point about indentation, and see more examples, as we work
more with Python.

356 CHAPTER 23. FROM PYRET TO PYTHON

23.6 Creating and Processing Lists

As an example of lists, let’s assume we’ve been playing a game that involves mak-
ing words out of a collection of letters. In Pyret, we could have written a sample
word list as follows:

words = [list: "banana", "bean", "falafel", "leaf"]

In Python, this definition would look like:

words = ["banana", "bean", "falafel", "leaf"]

The only difference here is that Python does not use the list: label that is
needed in Pyret.

Filters, Maps, and Friends

When we first learned about lists in Pyret, we started with common built-in func-
tions such as filter, map, member and length. We also saw the use of lambda
to help us use some of these functions concisely. These same functions, including
lambda, also exist in Python. Here are some samples:

words = ["banana", "bean", "falafel", "leaf"]

filter and member

words_with_b = list(filter(lambda wd: "b" in wd, words))

filter and length

short_words = list(filter(lambda wd: len(wd) < 5, words))

map and length

word_lengths = list(map(len, words))

Note that you have to wrap calls to filter (and map) with a use of list().
Internally, Python has these functions return a type of data that we haven’t yet
discussed (and don’t need). Using list converts the returned data into a list. If you
omit the list, you won’t be able to chain certain functions together. For example,
if we tried to compute the length of the result of a map without first converting to a
list, we’d get an error:

››› len(map(len,b))

TypeError: object of type ’map’ has no len()

Don’t worry if this error message makes no sense at the moment (we haven’t
yet learned what an “object” is). The point is that if you see an error like this while
using the result of filter or map, you likely forgot to wrap the result in list.

23.7. DATA WITH COMPONENTS 357

Exercise

Practice Python’s list functions by writing expressions for the following prob-
lems. Use only the list functions we have shown you so far.

• Given a list of numbers, convert it to a list of strings "pos", "neg",
"zero", based on the sign of each number.

• Given a list of strings, is the length of any string equal to 5?

• Given a list of numbers, produce a list of the even numbers between 10
and 20 from that list.

We’re intentionally focusing on computations that use Python’s built-in func-
tions for processing lists, rather than showing you how to write you own (as we did
with recursion in Pyret). While you can write recursive functions to process lists
in Pyret, a different style of program is more conventional for that purpose. We’ll
look at that in the chapter on chapter 25.

23.7 Data with Components

An analog to a Pyret data definition (without variants) is called a dataclass in
Python. Here’s an example of a todo-list datatype in Pyret and its corresponding Those experienced with Python

may wonder why we are using
dataclasses instead of
dictionaries or raw classes.
Compared to dictionaries,
dataclasses allow the use of
type hints and capture that our
data has a fixed collection of
fields. Compared to raw
classes, dataclasses generate a
lot of boilerplate code that
makes them much lighterweight
than raw classes.

Python code:

a todo item in Pyret

data ToDoItemData:

| todoItem(descr :: String,

due :: Date,

tags :: List[String]

end

--

the same todo item in Python

to allow use of dataclasses

from dataclasses import dataclass

to allow dates as a type (in the ToDoItem)

from datetime import date

@dataclass

class ToDoItem:

358 CHAPTER 23. FROM PYRET TO PYTHON

descr: str

due: date

tags: list

a sample list of ToDoItem

MyTD = [ToDoItem("buy milk", date(2020, 7, 27), ["shopping", "home"]),

ToDoItem("grade hwk", date(2020, 7, 27), ["teaching"]),

ToDoItem("meet students", date(2020, 7, 26), ["research"])

]

Things to note:

• There is a single name for the type and the constructor, rather than separate
names as we had in Pyret.

• There are no commas between field names (but each has to be on its own
line in Python)

• There is no way to specify the type of the contents of the list in Python (at
least, not without using more advance packages for writing types)

• The @dataclass annotation is needed before class.

• Dataclasses don’t support creating datatypes with multiple variants, like we
did frequently in Pyret. Doing that needs more advanced concepts than we
will cover in this book.

Accessing Fields within Dataclasses

In Pyret, we extracted a field from structured data by using a dot (period) to “dig
into” the datum and access the field. The same notation works in Python:

››› travel = ToDoItem("buy tickets", date(2020, 7, 30), ["vacation"])

››› travel.descr

"buy tickets"

23.8. TRAVERSING LISTS 359

23.8 Traversing Lists

Introducing For Loops

In Pyret, we wrote recursive functions to compute summary values over lists. As a
reminder, here’s a Pyret function that sums the numbers in a list:

fun sum-list(numlist :: List[Number]) -> Number:

cases (List) numlist:

| empty => 0

| link(fst, rst) => fst + sum-list(rst)

end

end

In Python, it is unusual to break a list into its first and rest components and
process the rest recursively. Instead, we use a construct called a for to visit each
element of a list in turn. Here’s the form of for, using a concrete (example) list of
odd numbers:

for num in [5, 1, 7, 3]:

// do something with num

The name num here is of our choosing, just as with the names of parameters to
a function in Pyret. When a for loop evaluates, each item in the list is referred to
as num in turn. Thus, this for example is equivalent to writing the following:

// do something with 5

// do something with 1

// do something with 7

// do something with 3

The for construct saves us from writing the common code multiple times, and also
handles the fact that the lists we are processing can be of arbitrary length (so we
can’t predict how many times to write the common code).

Let’s now use for to compute the running sum of a list. We’ll start by figuring
out the repeated computation with our concrete list again. At first, let’s express the
repeated computation just in prose. In Pyret, our repeated computation was along
the lines of “add the first item to the sum of the rest of the items”. We’ve already
said that we cannot easily access the “rest of the items” in Python, so we need to
rephrase this. Here’s an alternative:

// set a running total to 0

// add 5 to the running total

// add 1 to the running total

360 CHAPTER 23. FROM PYRET TO PYTHON

// add 7 to the running total

// add 3 to the running total

Note that this framing refers not to the “rest of the computation”, but rather to the
computation that has happened so far (the “running total”). If you happened to
work through the chapter on section 10.8.2, this framing might be familiar.

Let’s convert this prose sketch to code by replacing each line of the sketch with
concrete code. We do this by setting up a variable named run_total and updating
its value for each element.

run_total = 0

run_total = run_total + 5

run_total = run_total + 1

run_total = run_total + 7

run_total = run_total + 3

This idea that you can give a new value to an existing variable name is something
we haven’t seen before. In fact, when we first saw how to name values (in sec-
tion 4.3), we explicitly said that Pyret doesn’t let you do this (at least, not with the
constructs that we showed you). Python does. We’ll explore the consequences of
this ability in more depth shortly (in chapter 25). For now, let’s just use that ability
so we can learn the pattern for traversing lists. First, let’s collapse the repeated
lines of code into a single use of for:

run_total = 0

for num in [5, 1, 7, 3]:

run_total = run_total + num

This code works fine for a specific list, but our Pyret version took the list to sum as
a parameter to a function. To achieve this in Python, we wrap the for in a function
as we have done for other examples earlier in this chapter. This is the final version.

def sum_list(numlist : list) -> float:

"""sum a list of numbers"""

run_total = 0

for num in numlist:

run_total = run_total + num

return(run_total)

Do Now!

Write a set of tests for sum_list (the Python version).

Now that the Python version is done, let’s compare it to the original Pyret
version:

23.8. TRAVERSING LISTS 361

fun sum-list(numlist :: List[Number]) -> Number:

cases (List) numlist:

| empty => 0

| link(fst, rst) => fst + sum-list(rst)

end

end

Here are some things to notice about the two pieces of code:

• The Python version needs a variable (here run_total) to hold the result of
the computation as we build it up while traversing (working through) the list.

• The initial value of that variable is the answer we returned in the empty case
in Pyret.

• The computation in the link case of the Pyret function is used to update that
variable in the body of the for.

• After the for has finished processing all items in the list, the Python version
returns the value in the variable as the result of the function.

An Aside on Order of Processing List Elements

There’s another subtlety here if we consider how the two programs run: the Python
version sums the elements from left to right, whereas the Pyret version sums them
right to left. Concretely, the sequence of values of run_total are computed as:

run_total = 0

run_total = 0 + 5

run_total = 5 + 1

run_total = 6 + 7

run_total = 13 + 3

In contrast, the Pyret version unrolls as:

sum_list([list: 5, 1, 7, 3])

5 + sum_list([list: 1, 7, 3])

5 + 1 + sum_list([list: 7, 3])

5 + 1 + 7 + sum_list([list: 3])

5 + 1 + 7 + 3 + sum_list([list:])

5 + 1 + 7 + 3 + 0

5 + 1 + 7 + 3

5 + 1 + 10

5 + 11

362 CHAPTER 23. FROM PYRET TO PYTHON

16

As a reminder, the Pyret version did this because the + in the link case can only
reduce to an answer once the sum of the rest of the list has been computed. Even
though we as humans see the chain of + operations in each line of the Pyret un-
rolling, Pyret sees only the expression fst + sum-list(rst), which requires the
function call to finish before the + executes.

In the case of summing a list, we don’t notice the difference between the two
versions because the sum is the same whether we compute it left-to-right or right-
to-left. In other functions we write, this difference may start to matter.

Using For Loops in Functions that Produce Lists

Let’s practice using for loops on another function that traverses lists, this time one
that produces a list. Specifically, let’s write a program that takes a list of strings
and produces a list of words within that list that contain the letter "z".

As in our sum_list function, we will need a variable to store the resulting
list as we build it up. The following code calls this zlist. The code also shows
how to use in to check whether a character is in a string (it also works for checking
whether an item is in a list) and how to add an element to the end of a list (append).

def all_z_words(wordlist : list) -> list:

"""produce list of words from the input that contain z"""

zlist = [] // start with an empty list

for wd in wordlist:

if "z" in wd:

zlist = [wd] + zlist

return(zlist)

This code follows the structure of sum_list, in that we update the value of zlist
using an expression similar to what we would have used in Pyret.For those with prior Python

experience who would have
used zlist.append here, hold
that thought. We will get there
in section 26.1.

Exercise

Write tests for all_z_words.

Exercise

Write a second version of all_z_words using filter. Be sure to write tests
for it!

23.8. TRAVERSING LISTS 363

Exercise

Contrast these two versions and the corresponding tests. Did you notice any-
thing interesting?

Summary: The List-Processing Template for Python

Just as we had a template for writing list-processing functions in Pyret, there is a
corresponding template in Python based on for loops. As a reminder, that pattern
is as follow:

def func(lst: list):

result = ... # what to return if the input list is empty

for item in lst:

combine item with the result so far

result = ... item ... result

return result

Keep this template in mind as you learn to write functions over lists in Python.

364 CHAPTER 23. FROM PYRET TO PYTHON

Part V

Programming with State

365

Chapter 24

Modifying Structured Data

Many programs work with data that get updated over time: as users of common
software applications, we mark email messages as read, add items to shopping
lists, add entries to our calendars, and update the due dates of to-do items as our
schedules change. We haven’t yet written programs that update data, but you now
have the foundational skills you need to learn how to do this.

It turns out that there are a couple of different kinds of updates that we can
make to data. Consider our to-do list example: we might want to add items to the
list (or better still, take them out!), but we also need to update details of existing
items (such as their descriptions or due dates). We’ll learn to update details of
existing items first.

As a reminder, here is the dataclass for ToDoItem, along with examples of the
data.

@dataclass

class ToDoItem:

descr : str

due : date

tags : list

milk_item = ToDoItem("buy milk", date(2020, 7, 27), ["shopping", "home"])

grading_item = ToDoItem("grade hwk", date(2020, 7, 28), ["teaching"])

paper_item = ToDoItem("meet students", date(2020, 7, 26), ["research"])

todo_list = [grading_item, milk_item, paper_item]

367

368 CHAPTER 24. MODIFYING STRUCTURED DATA

24.1 Modifying Fields of Structured Data

In Python, we modify a field of a dataclass by using = to give a new value to the
field within the value. For example:

milk_item.due = date(11, 15, 2020)

paper_item.descr = "meet Jack"

Once we do this, the original value is gone, replaced by the new value. We can
see this by accessing the field (or by looking in the program-directory pane if your
programming environment has that feature):

print(milk_item.due)

Do Now!

Check the value of todo_list. Does milk_item have the original date or
the new date?

Since we modified the contents of milk_item, which was in the list, todo_list
shows the new date. This is a big deal! Changes we make through one name in our
directory can be visible through another name. This happens when we have set up
relationships between data (such as putting a dataclass item in a list, while having
names for both the item and the list). This subtlety is why we deferred data updates
until now (and we’ll take this chapter and the next to work through the subtleties
and consequences).

Let’s now write a function to modify the date in a ToDoItem.

def modify_duedate(forItem : ToDoItem, new_date : date):

"""change due date on given item to the new date"""

forItem.due = new_date

What does this function return? Nothing, as it turns out. The purpose of this
function isn’t to produce an answer, but rather to simply update a piece of data.
You’ll note there is no return statement here. If you run the function, Python just
gives you the prompt again, without showing a result.

How, then, do we test a procedure/function that doesn’t return anything? Our
whole practice of testing until now has been based on calling functions and check-
ing their expected answers. When a function updates data, we need to check that
the update occurred properly. In other words, we check for the expected effect of
calling the function. Here, the expected effect is that the due field of the provided
ToDoItem will have the new date. We also expect that the other fields (descr and
tags) have not changed. Here’s an example test function:

24.2. MODIFICATIONS TO SHARED DATA 369

def test_modify_duedate():

SETUP

item = ToDoItem("register", date(2020, 11, 9), ["school"])

PERFORM MODIFICATIONS

modify_duedate(item, date(2020, 11, 15))

CHECK EFFECTS

assert item.due == date(2020, 11, 15)

assert item.descr == "register"

assert item.tags == ["school"]

This test function is longer than ones we have written before. The strings within
the function are serving as labels for the three steps we take when testing for up-
dates: we set up or create our test data, we call the function to modify the data, then
we check the expected effects from the modification. While these strings are not
strictly necessary, we find the labels are a useful guide for both you and the person
who will read your code.

24.2 Modifications to Shared Data

Imagine that you have a very important phone call coming up, so you made multi-
ple to-do items to make sure you don’t lose track of it. By the time you made the
third item, you were tired of typing, so you decided to reuse the definition of the
second one, just with a new name:

call1 = ToDoItem("call Fred", date(2020, 11, 19), ["urgent"])

call2 = ToDoItem("call Fred", date(2020, 11, 19), ["urgent"])

call3 = call2

Do Now!

Draw the program directory for this code

Directory

• call1

→

ToDoItem("call Fred", date(2020, 11, 19), ["urgent"])

370 CHAPTER 24. MODIFYING STRUCTURED DATA

• call2

→

ToDoItem("call Fred", date(2020, 11, 19), ["urgent"])

• call3

→

ToDoItem("call Fred", date(2020, 11, 19), ["urgent"])

The directory suggests that all three calls are the same. We can confirm this by
running the following commands:

››› call1 == call2

True

››› call2 == call3

True

Fred is unexpectedly out of the office, so now you need to call Tina instead.
You decide to modify the call reminders to reflect this change.

Do Now!

Write a command to change the description within call3 to "call Tina"

instead of "call Fred" (we’ll get to the other two in a moment).

Using what we just learned, we want the following:

call3.descr = "call Tina"

Let’s check whether call3 shows the new value:

››› call3

ToDoItem("call Tina", date(2020, 11, 19), ["urgent"])

This corrects call3. Presumably, call1 and call2 still indicate that we need
to call Fred. Let’s check.

24.3. UNDERSTANDING MEMORY 371

››› call1

ToDoItem("call Fred", date(2020, 11, 19), ["urgent"])

››› call2

ToDoItem("call Tina", date(2020, 11, 19), ["urgent"])

Wait! call2 has already been changed. Furthermore, the check we made
earlier that call1 and call2 referred to the same values now returns False, even
though we didn’t explicitly change any fields of either of them!

››› call1 == call2

False

If we again ask whether call2 and call3 have the same values (which they
did before the update), we find that they still do:

››› call2 == call3

True

Perhaps this check is not surprising. We did, after all, create call3 based on
call2 when we wrote call3 = call2. But we are still left with the unsettling ob-
servation that running a line of code (the update call3.descr = "call Tina")
that had nothing to do with call1 or call2 changed the == relationship between
call1 and call2. These observations suggest that equality is more subtle than
it first appeared. Furthermore, our program directory isn’t currently sophisticated
enough to show us that the relationship between call1 and call2 is different than
that between call2 and call3. We’ll start with the program directory, then come
back to equality.

24.3 Understanding Memory

Every time you use a constructor to create data, your programming environment
stores in the memory of your computer. Memory consists of a (large) number of
slots. Your newly-created datum goes into one of these slots. Each slot is labeled
with an address. Just as a street address refers to a specific building, a memory
address refers to a specific slot where a datum is stored. Memory slots are phys-
ical entities, not conceptual ones. A computer with a 500GB hard drive has 500

372 CHAPTER 24. MODIFYING STRUCTURED DATA

billion slots in which it can store data. Not all of that memory is available to your
programming environment: your web browser, applications, operating system, etc
all get stored in the memory. Your programming environment does get a portion of
memory to use for storing its data. That portion is called the heap.

When you write a statement like

call1 = ToDoItem("call Fred", date(2020, 11, 19), ["urgent"])

your programming environment puts the new ToDoItem into a physical slot in the
heap, then associates the address of that slot with the variable name in the directory.
The name in the directory doesn’t map to the value itself, but rather to the address
that holds the value. The address bridges between the physical storage location and
the conceptual name you want to associate with the new datum. In other words,
our directory really looks like:

Directory

• call

→@1001

Heap

• @1001:
ToDoItem("call Fred" ...)

Our revised version has two separate areas: the directory (mapping names to ad-
dresses) and the heap (showing the values stored in the addresses). The initial
address @1001 is arbitrary: you can start from any address number. We will use
four digit numbers to distinguish addresses from smaller values that we will use as
data in our programs.

This revised directory-plus-heap information explains what we recently ob-
served about the relationships among call1, call2, and call3 around the update
to call3.descr. Let’s revisit the code by which we introduced these names into
the directory. First, we made new two ToDoItem data values and associated them
with call1 and call2:

call1 = ToDoItem("call Fred", date(2020, 11, 19), ["urgent"])

call2 = ToDoItem("call Fred", date(2020, 11, 19), ["urgent"])

After running these two statements, the directory and heap appear as follows:
Directory

• call1

→@1001

24.3. UNDERSTANDING MEMORY 373

• call2

→@1002

Heap

• @1001:
ToDoItem("call Fred" ...)

• @1002:
ToDoItem("call Fred" ...)

What happens now when we evaluate call3 = call2? This statement eval-
uates just as it did before: we create a directory entry for call3 and associate it
with the result of the right side of the =. The “result” of the computation here is the
address where the value is stored. The value of call2 is in @1002, so we associate
that same address with call3.

Directory

• call1

→@1001

• call2

→@1002

• call3

→@1002

Heap

• @1001:
ToDoItem("call Fred" ...)

• @1002:
ToDoItem("call Fred" ...) You can hover over the location

markers to see the connections
between the directory and
memory areas.

With the heap articulated separately from the directory, we now see the rela-
tionship between call3 and call2: they refer to the same address, which in turn
means that they refer to the same value. call1, however, refers to a different ad-
dress (that just happens to contain a value with the same field contents).

374 CHAPTER 24. MODIFYING STRUCTURED DATA

24.4 Variables and Equality

Given the existence of both the directory and a heao now lets us return to the
question of what equality means. Considering our development of call1, call2,
and call3, we have seen there are (at least) two notions of equality:

• Two expressions (which include names) evaluate to the same address in the
heap

• Two expressions evaluate to values with the same types and with the same
field contents, but may be in different addresses in the heap

The == operator that you learned in Pyret and we carried into Python checks the
second condition. Two expressions can be == while referring to different addresses.
If we want to know whether two names refer to the same address, we instead use
an operation called is. Let’s revisit our ToDoItem creation one last time:

call1 = ToDoItem("call Fred", date(2020, 11, 19), ["urgent"])

call2 = ToDoItem("call Fred", date(2020, 11, 19), ["urgent"])

call3 = call2

››› call1 == call2

True

››› call2 == call3

True

››› call1 is call2

False

››› call2 is call3

True

24.5. BASIC DATA IN MEMORY 375

Both notions of equality are useful in practice, and indeed most languages will
give you two different equality operators: one for equality of address, and one for
equality of (component) values. In Python, we use is for address equality and ==

for equality of values. If you did section 21.1, you saw this difference in Pyret as
<=> versus ==. Pyret also offers a temporal based notion of equality. (If you did
not do anything in section 21.1, you weren’t exposed to these equality variations
in Pyret.)

As we go forward, you’ll get more practice with when to use each kind of
equality. The == operator is more accepting, so it is usually the right default. If
you actually need to know whether two expressions refer to the same address, you
can switch to is.

24.5 Basic Data in Memory

We have shown how to place structured data in our new directory/heap structure,
but what about basic data? For example, what if our original program to set up the
call items also included the following two lines:

x = 4

y = 5

The corresponding directory/heap contents would be as follows:
Directory

• call1

→@1001

• call2

→@1002

• call3

→@1002

• x

→

4

376 CHAPTER 24. MODIFYING STRUCTURED DATA

• y

→

5

Heap

• @1001:
ToDoItem("call Fred" ...)

• @1002:
ToDoItem("call Tina" ...)

This shows that basic data live in the directory, not the heap. The whole point of
structured data is that they have both their own identity and multiple components.
The heap gives access to both concepts. Basic data can’t be broken down (by
definition). As such, there is nothing lost by putting them only in the directory.

What about strings, however? We’ve referred to them as basic data until now,
but doesn’t they have components, in terms of the sequence of characters that make
up the string? Yes, that is technically accurate. However, we are treating strings as
basic data because we aren’t using operations that modify that sequence of strings.
This is a fine point, one that usually comes up in later CS courses. This book
will leave strings in the directory, but if you are writing programs that modify the
internal characters, put them in the heap instead.

Chapter 25

Modifying Variables

We’ve now seen two different forms of updates in programs: updates to fields of
structured data in chapter 24, and updates to the values associated with names when
computing over lists with for loops in section 23.8. At a quick glance, these two
forms of update look similar:

call3.descr = "call Tina"

run_total = run_total + fst

Both use the = operator and compute a new value on the right side. The left sides,
however, are subtly different: one is a field within a value, while the other is a
name in the directory. This difference turns out to be significant, as we can see by
working through how these two forms work at the level of the directory and the
heap. We covered this for the call3.descr update in the last chapter. Now, let’s
look at the run_total update.

25.1 Modifying Variables in Memory

Here again is our earlier code for summing the numbers in a list:

run_total = 0

for num in [5, 1, 7, 3]:

run_total = run_total + num

The first line makes an entry in the directory:
Directory

• run_total

→

377

378 CHAPTER 25. MODIFYING VARIABLES

0

The for loop also sets up a directory entry, this time for the variable num used
to refer to the list elements. Thus, the directory appears as:

Directory

• run_total

→

0

• num

→

5

Inside the for loop, we compute a new value for run_total. The use of = tells
Python to modify the value of run_total in the directory.

Directory

• run_total

→

5

• num

→

5

This process continues: Python advances num to the next list element
Directory

• run_total

→

25.1. MODIFYING VARIABLES IN MEMORY 379

5

• num

→

1

then modifies the value of run_total
Directory

• run_total

→

6

• num

→

1

This process continues until all of the list elements have been processed.
What is the takeaway from this? There are two:

1. The = construct associates a name with a value. If the name is not already in
the directory, it gets added. If the name is already in the directory, the new
value replaces the old value. The old value is no longer accessible.

2. for loops also introduce a name into the directory, specifically the one the
programmer chose to refer to the individual list elements. Python modifies
the value of that name as part of processing the for loop.

The ability to modify the values associated with names probably doesn’t seem
like a big deal just yet, but upcoming programs will show where this ability gets
interesting.

380 CHAPTER 25. MODIFYING VARIABLES

Exercise

Draw the sequence of directory contents for the following program:

score = 0

score = score + 4

score = 10

Exercise

Draw the sequence of directory contents for the following program:

count_long = 0

for word in ["here", "are", "some", "words"]:

if len(word) > 4:

count_long = count_long + 1

In chapter 24, we saw how a statement of the form call3 = call2 resulted in
a change to call3.descr also affecting the value of call2. Does this same effect
occur if we update the value of a variable directly, rather than a field? Consider the
following example:

y = 5

x = y

Do Now!

What do the directory and heap look like after running this code?

Since x and y are assigned basic values, there are no values in the heap:
Directory

• y

→

5

• x

→

5

25.1. MODIFYING VARIABLES IN MEMORY 381

Do Now!

If we now evaluate y = 3, does the value of x change?

It does not. The value associated with y in the directory changes, but there is
no connection between x and y in the directory. The = command does associate the
value mapped to y with x, but that is not the same as having the two variables track
each other. Any time we update the value associated with a name (as opposed to a
field), only the directory changes. The resulting directory therefore looks like:

Directory

• y

→

3

• x

→

5

That the value of x did not change is because of the form of the update:
name = It has nothing to do with the fact that x and y were associated with
basic data. For example, here is another way we might have updated our earlier
program involving call3 to tell us to call "Tina".

call1 = ToDoItem("call Fred", date(2020, 11, 19), ["urgent"])

call2 = ToDoItem("call Fred", date(2020, 11, 19), ["urgent"])

call3 = call2

call3 = ToDoItem("call Tina", date(2020, 11, 19), ["urgent"])

Do Now!

Write out the directory and heap after running this program.

You should have come up with the following:
Directory

• call1

→@1001

382 CHAPTER 25. MODIFYING VARIABLES

• call2

→@1002

• call3

→@1003

Heap

• @1001:
ToDoItem("call Fred" ...)

• @1002:
ToDoItem("call Fred" ...)

• @1003:
ToDoItem("call Tina" ...)

With this version, updating the ToDoItem associated with call3 does not af-
fect the descr field of call2. That updating via fields affects both variables while
updating the variables directly does not is one of the most common confusions in
introductory programming. Statements like var1 = var2 do not set up relation-
ships that persist between variables over time. Moreover, these statements are not
commutative, meaning that var1 = var2 and var2 = var1 do not make the same
modifications to the directory. The variable on the left of = is reassigned to a new
value in the directory, and that value comes from evaluating whatever is on the
right. If the expression on the right of = is just a variable, then the value is retrieved
from the directory and associated with the variable on the left.

Is there any way to get two variables to track each other’s values? No, but as we
saw with our first (field-based) approach to updating call3, it is possible for two
variables to reference the same structured datum, and thereby share modifications.
We’ll see more examples of this as we go.

Ultimately, this book is trying to teach you how to work with various kinds of
information that might show up in a real project. Up until now, we’ve focused on
the structure of information (tables vs lists vs datatypes/dataclasses) and how to
write programs to process those structures.

But now, we’re starting to consider an additional question: does any of our data
need to be shared across different parts of the program, such that multiple parts of
the program might need to change the data and see the changes? So far, we’ve seen
how dataclasses work when they are shared. Can we also share lists? What does
that look like? We’ll tackle those questions next.

25.2. MODIFYING VARIABLES ASSOCIATED WITH LISTS 383

Strategy: Rules for updating the directory and the heap

Summarizing, the rules for how the directory and memory update are as fol-
lows:

• We add to memory when a data constructor is used

• We update memory when a field of existing data is reassigned

• We add to the directory when a name is used for the first time (this
includes parameters and internal variables when a function is called)

• We update the directory when a name that is already in the directory is
reassigned to a different value)

25.2 Modifying Variables Associated with Lists

Let’s expand our study of updates yet again, this time looking at updating lists.
We’ll start with a list of basic data: strings representing votes cast through a poll.
We’ll need functions that let people cast votes, as well as functions to tally the
votes cast for specific options and functions to determine which option had the
most votes.

As a concrete example, let’s assume that students are responding to a poll about
their favorite desserts. We’ll start by setting up an initial (empty) list of the votes
that have been cast:

theVotes = []

This would create an entry in the directory:
Directory

• theVotes

→

[]

Do Now!

Write a sequence of 2 commands: one to add "fruit" to theVotes and
another to add "churros".

384 CHAPTER 25. MODIFYING VARIABLES

Your code should look something like:

theVotes = ["fruit"] + theVotes

theVotes = ["churros"] + theVotes

Do Now!

Draw the directory after both of these modifications have been made.

Our directory now contains a single list with all of our items:
Directory

• theVotes

→

["churros", "fruit"]

Do Now!

Why are new items at the front of the list? What would need to change to put
new votes at the end of the list instead?

Exercise

Write a function count_votes_for that takes the name of a dessert and re-
turns the number of times that the given dessert appears in theVotes.

Exercise

Imagine that you were now asked to determine which option received the
most votes. Develop two different task plans (section 8.2) that would perform
this computation. You don’t have to write the code, just the plans.

25.3 Writing Functions that Modify Variables

Our two modification commands are (not surprisingly) the same except for the
vote that we are casting. Seeing as we expect many votes to be cast, it would make
sense to turn this repeated code into a function. As we did in Pyret, we create a
parameter name for the information that differs across the commands, and make
the remainder of the commands the body of the function. Here’s the proposed
code:

25.3. WRITING FUNCTIONS THAT MODIFY VARIABLES 385

def cast_vote(item: str):

"""add given item to the theVotes list"""

theVotes = [item] + theVotes

If this function were the only code in your file, Python would not accept it.
It would complain that the theVotes variable is unbound (which means it isn’t
associated with a name). We need to have created an initial value of theVotes so
that it exists in the directory. Earlier in this section, we started with an initial empty
list of votes. We have to include that in our file.

theVotes = []

def cast_vote(item: str):

"""add given item to the theVotes list"""

theVotes = [item] + theVotes

If we try to load this file, Python is still complaining, again that the variable
theVotes is unbound. But we just defined it. What could be the problem here?

The problem is has to do with where the variable is defined. Here, we are try-
ing to modify the variable inside a function, but we created the variable outside the
function. When we wrote sum_list, the variable with the running total was cre-
ated and modified within the same function. Here, the theVotes variable is defined
outside the function. Why might this matter? The answer lies in the directory.

The global annotation

Whenever a function gets called, the programming language creates a new direc-
tory area with a space for local information. If we create an empty list of votes then
call cast_vote("fruit"), the directory has the following contents just before we
modify the list:

Directory

• theVotes

→

[]

By default, Python restricts your program to modifying variables in the local direc-
tory. This is a good default, as it prevents function calls from interfering with each
other. In sum_list, for example, we want to sum each list independently, without
the results of summing one list affecting the sum reported for another.

386 CHAPTER 25. MODIFYING VARIABLES

Sometimes, however, we want data from one function call to affect later calls.
That is, in fact, the whole point of having a variable where we maintain our current
list of votes. We therefore have to tell Python that we want to modify the value
of the theVotes variable that is outside of the local area. The Python keyword
global achieves that:

theVotes = []

def cast_vote(item: str):

"""add given item to the theVotes list"""

global theVotes

theVotes = [item] + theVotes

The global annotation is used with the name of a variable that was defined
outside the function that we want this function to modify. You can’t use this to
modify the values of variables that were introduced in other functions, just ones
that were defined at the same level as the functions in your file (the so-called “top”
level).

25.4 Testing Functions that Modify global Variables

We developed cast_vote by making a function from two commands with shared
content. We didn’t write tests for it though. Let’s add a testing function now.

Do Now!

Try to write a test case for cast_vote. Write down either a concrete test (in
pytest form) or write down a question whose answer would help you figure
out how to write a test.

Following the form of tests that we developed in section 23.3, we expect to
write something like

def test_cast_vote():

assert cast_vote("basbousa") == ...

What fills in the ...? As we saw when testing the function to update ToDoItem

descriptions, we write tests that check the effects of update functions, not their
returned results.

Do Now!

What effect do we expect cast_vote("basbousa") to have? It modifies
theVotes, so refer to theVotes or "basbousa" in your answer.

25.4. TESTING FUNCTIONS THAT MODIFY GLOBAL VARIABLES 387

One claim that directly follows from the problem statement would be "theVotes
should contain "basbousa"". Can we turn this into code to form a test case? Yes,
and here’s the code:

def test_cast_vote():

cast_vote("basbousa")

assert "basbousa" in theVotes

This example shows the essence of testing functions that modify variables.
Rather than put the function call in the assert statement, we call the function first,
then write an assert that uses the variable itself to check for the expected change.

Do Now!

Are there other expected changes that we should check? Can you come up
with a cast_vote function that would pass this test but not do what we ex-
pected?

Imagine that someone wrote the following cast_vote function instead:

theVotes = []

def cast_vote(item: str):

"""add given item to the theVotes list"""

global theVotes

theVotes = [item]

This modifies theVotes to include the given item, but it accidentally throws
away the rest of the list! Our current test_cast_vote would approve of this
version, which suggests that additional tests are needed.

Do Now!

What other expectations do you have about theVotes after the function runs?
Can you capture those as assert statements about the variable?

One expectation we might have is that theVotes would be 1 element longer
after the call than it was before the call. Here’s how to augment test_cast_vote
to include this assertion:

def test_cast_vote():

pre_length = len(theVotes)

cast_vote("basbousa")

assert "basbousa" in theVotes

assert len(theVotes) == pre_length + 1

388 CHAPTER 25. MODIFYING VARIABLES

The strategy here is to use a local variable to save the length of theVotes

before calling cast_vote, then use that saved value to check the expected impact
after the call.

Do Now!

Are there other impacts to consider? Could a program satisfy our current two
tests and still not do what we expect?

If we start imagining worst-case scenarios, we could envision a malicious vot-
ing machine that doubles the impact of a vote by removing an old vote and replac-
ing it with two copies of the newly cast vote. Here’s code that wouild do that (the
list[1:] returns the rest of list. in general list[x:y] takes the sublist from
index x up to but not including index y).

def cast_vote(item: str):

"""add given item to the theVotes list"""

global theVotes

theVotes = [item] + [item] + theVotes[1:]

Okay, yes, this could happen, but isn’t this sort of idea generation getting a
little excessive? Yes and no. If you are writing test cases for a voting machine,
you absolutely should be thinking about situations like this (because people trying
to influence elections might try them). The ability to think about how adversaries
might abuse a system is a valuable skill (and you can build a career around doing
this well). But it does feel a bit open-ended, especially in a first programming
course.

Fortunately, we have a much more systematic way to raise the robustness of our
tests. Recall that we asked you to write a function called count_votes_for as an
exercise. Since both cast_vote and count_votes_for work with the theVotes

variable, we should check that the results of count_votes_for are what we would
expect after cast_vote modifies the variable.

Do Now!

Modify test_cast_vote to also check that the results of count_votes_for
change as expected.

Here’s a revised test function:

def test_cast_vote():

pre_length = len(theVotes)

pre_count = count_votes_for("basbousa")

cast_vote("basbousa")

25.4. TESTING FUNCTIONS THAT MODIFY GLOBAL VARIABLES 389

assert "basbousa" in cast_vote

assert len(theVotes) == pre_length + 1

assert count_votes_for("basbousa") == pre_count + 1

To be careful, we also should test that the vote count has not changed for a
dessert other than "basbousa".

Do Now!

Add a test for a dessert other than "basbousa".

One challenge here is that we don’t know what other votes have been cast.
From the perspective of this test, only one vote gets cast, so a test for any other
dessert might only check desserts that aren’t in the list.

A better test function would set theVotes to have specific contents, to give us
more data to work with.

def test_cast_vote():

theVotes = ["fruit", "churros", "fruit", "basbousa"]

pre_length = len(theVotes)

pre_count = count_votes_for("basbousa")

pre_fruit = count_votes_for("fruit")

cast_vote("basbousa")

assert "basbousa" in cast_vote

assert len(theVotes) == pre_length + 1

assert count_votes_for("basbousa") == pre_count + 1

assert count_votes_for("fruit") == pre_fruit

Do Now!

This code has fixed the content of theVotes. This suggests that we no
longer need to save information about the results of functions before calling
cast_vote. We could edit the assert statements to use manually-computed
values (such as 3 in place of pre_length). Is this a good idea?

You certainly could remove the pre_ definitions and just use concrete numbers
in the assert statements. As you are getting started, you may prefer to do that.
However, the benefit to the current setup is that we could modify the initial value of
theVotes (if we think of another important case to check) without then having to
modify all of the assert statements. The current setup also lets someone else read
your assert statements and clearly understand the effect being tested: having the
right side of == say pre_count + 1 is more informative than a concrete number
like 2. Remember: examples and code are meant to be read by other people!

390 CHAPTER 25. MODIFYING VARIABLES

The Internal Structure of a Test Function

This testing function seems to be getting a bit long. If we look closely, however,
we’ll see it has some structure to it, which we’ll highlight by adding some blank
lines and labeling strings between key testing tasks. (Remember that Python uses
strings as a commenting mechanism.) These are the same labels that we added to
our earlier example of a test function for updating descriptions.

def test_cast_vote():

SETUP

theVotes = ["fruit", "churros", "fruit", "basbousa"]

SAVE CURRENT VALUES

pre_length = len(theVotes)

pre_count = count_votes_for("basbousa")

pre_fruit = count_votes_for("fruit")

PERFORM MODIFICATIONS

cast_vote("basbousa")

CHECK EFFECTS

assert "basbousa" in cast_vote

assert len(theVotes) == pre_length + 1

assert count_votes_for("basbousa") == pre_count + 1

assert count_votes_for("fruit") == pre_fruit

The first section sets up our data. The second saves any current values that
are needed for the tests. The third makes the function calls that we want to test.
The last checks the effects with the assert statements. Viewed this way, the long
function seems more manageable. The labels also remind us of the key tasks that
go into testing functions that modify variables.

Takeaways on Testing Modifications

What are the takeaways from all of this?

• When testing a function that modifies variables, we test assertions about the
effects of the function.

• A systematic way to identify effects to test is to leverage other functions that
use the variable that’s being modified. Testing basic properties like length
can also be useful.

25.4. TESTING FUNCTIONS THAT MODIFY GLOBAL VARIABLES 391

• There are four tasks involved in testing a function that modifies variables:
setting up the data, saving current values, calling the function to test, and
checking the effects.

Does it feel like testing has gotten more complicated now that variables are
being modified? It has. When there are no variables that are shared and modified
across functions, we can test each function individually. But once one function
modifies the value of a variable that other functions also use, we have to make
sure that the modifying function isn’t breaking the expected behavior of the others.
Variables are powerful, but that power comes with responsibility.

Strategy: Testing a Function that Modifies Data

1. In prose, write down the effects that you expect the modification to
have, both on traits of the variable’s value and on the results of other
functions that use the variable. Remember to consider situations that
should not be effected by the modification.

2. Create a test-function skeleton with areas for setup, saving current val-
ues, calling the function, and checking the effects.

3. In the setup section, set the value of the variable to a concrete value for
testing.

4. In the calling-the-function section, write the function call that you want
to test.

5. Turn each of the effects that you want to check into an assert state-
ment, naming and storing computations of any values from before the
test was run in the saving-current-values section.

392 CHAPTER 25. MODIFYING VARIABLES

Chapter 26

Revisiting Lists and Variables

26.1 Sharing List Updates

In chapter 24, we saw that we can have two names that refer to the same dataclass
value in memory. In this way, changes made to one are visible in the other. Put
differently, we can have two names that refer to the same datum. This same ability
could also be useful for lists. For example, you and a roommate might share a
shopping list, the registrar and the financial aid office might share a list of students,
and so on. In both examples, an list update made by one person or office should be
visible to the other. How do we implement this in Python?

More concretely, assume that Shaunae and Jonella are roommates who take
turns shopping for groceries. Each of them has access to a shared shopping list
(through their phones): any time one of them adds or removes an item, the other
person should see the change. How could we mock this up in code?

Do Now!

Create a shopping list for Shaunae with a couple of items, then give the same
list a second directory name corresponding to Jonella.

You might have written something like the following:

shaunae_list = ["bread", "coffee"]

jonella_list = shaunae_list

If you load this code at the prompt and look at both lists, you’ll see they have the
same values.

393

394 CHAPTER 26. REVISITING LISTS AND VARIABLES

Do Now!

Jonella realizes they are also out of eggs. Run an command at the prompt
to add "eggs" to Jonella’s list, then make sure "eggs" appears under both
names.

Based on what we learned about adding to lists in section 23.8.2, perhaps you wrote
something like

>>> jonella_list = ["eggs"] + jonella_list

>>> jonella_list

["eggs", "bread", "coffee"]

>>> shaunae_list

["bread", "coffee"]

What happened? Only Jonella’s list changed. When we use + to combine two
lists, Python creates a new list out of the elements of the existing lists. Since the
left side of the = is a name in the directory, Python modifies the directory to refer
to this new list. It does not maintain the relationship between jonella_list and
shaunae_list.

Surely sharing lists is a common enough pattern that there is a way to do this,
however. There is, but it requires us to work with lists in a different way than we
first saw in chapter 10.

Operations that Mutate Lists

So far, we have used + to append two lists together. This operation creates a new
list. Python offers a different operation (called append) for modifying an existing
list to include a new element. Here’s a different way we could have added "eggs"

to Jonella’s list.

>>> jonella_list.append("eggs")

>>> jonella_list

["bread", "coffee", "eggs"]

>>> shaunae_list

["bread", "coffee", "eggs"]

In this version, Python finds the address of jonella_list in the directory, fol-
lows the . over to the list datum in the heap, then operates on the list itself to add
"eggs". Unlike in the previous version, we don’t use = to assign a new value to
jonella_list. The append updates the list in the heap. Since jonella_list and
shaunae_list refer to the same address in memory, the addition via jonella_list
also shows up when we access the list through the name shaunae_list.

26.2. LISTS IN MEMORY 395

Similarly, if Shaunae buys "coffee", she can remove it from the shared list
using the remove operator:

>>> shaunae_list.remove("coffee")

>>> jonella_list

["bread", "eggs"]

>>> shaunae_list

["bread", "eggs"]

The point here is that both append and remove modify the contents of the list
in the heap. If two names refer to the same heap address, changes made through
one name appear through the other.

Does this mean we always want to modify lists using append and remove?
Not at all! Sometimes, we will want to build new lists rather than modifying old
ones (we’ll see some cases of this later). If you want a modification to be visible
through all names that refer to a list, use append. If you only want the addition of
an element to be visible through one name, use +.

26.2 Lists in Memory

In chapter 24, we drew directory-heap diagrams to show how dataclass values ap-
pear in the heap. What do lists look like in the heap? In Python, lists are stored by
putting a dataclass-like datum into memory that contains the number of elements in
the list, followed by individual elements in the subsequent addresses. For example,
here’s what Shaunae and Jonella’s shopping lists look like after adding "eggs":

Directory

• shaunae_list

→@1001

• jonella_list

→@1001
Heap

• @1001:
List(len:3)

• @1002: "bread"

• @1003: "coffee"

• @1004: "eggs"

396 CHAPTER 26. REVISITING LISTS AND VARIABLES

Instructors: Python’s default list
implementation is an
array-based list, not a linked
list. A section on linked lists
will be added in a later release
of the book.

There are no directory entries to the list elements, but the fact that the List

datum reflects size 3 tells us that the next three addresses are part of the list.

Do Now!

Work out the memory diagram for the following program:

scores = [89,72,92]

colors = ["blue", "brown"]

scores.append(83)

Does this raise any questions?

After defining the first two lists, your memory diagram should have looked like
(perhaps with a different starting address):

Directory

• scores

→@1005

• colors

→@1009

Heap

• @1005:
List(len:3)

• @1006: 89

• @1007: 72

• @1008: 92

• @1009: List(2)

• @1010: "blue"

• @1011: "brown"
What now happens when we append 83 to the scores list? Since lists are

supposed to have all of their elements in consecutive memory slots, 83 should go
into @1009, but that address is already occupied! We shouldn’t destroy the colors
list just because we added to the scores list.

26.2. LISTS IN MEMORY 397

In practice, lists are created with some extra space to allow for later additions.
Here’s a more accurate diagram:

Directory

• scores

→@1005

• colors

→@1014

398 CHAPTER 26. REVISITING LISTS AND VARIABLES

Heap

• @1005:
List(len:3, slots:8)

• @1006: 89

• @1007: 72

• @1008: 92

• @1009: None

• @1010: None

• @1011: None

• @1012: None

• @1013: None

• @1014:
List(len:2, slots:8)

• @1015: "blue"

• @1016: "brown"

• @1017: None

• @1018: None

• @1019: None

• @1020: None

• @1021: None

• @1022: None
The None value is what Python uses to indicate "there’s nothing here". Note

that the List datum has also changed: it how has two fields, one for the number
of elements, and another for the number of slots. We also modified the directory to
reflect the new address for the scores list.

There’s now room to perform the append on the scores list. The 83 would
get inserted into @1009 and the len field of the List would get updated to 4.

Couldn’t a list still run out of room though? Absolutely. When that happens,

26.3. PRACTICE: DATA FOR SHARED BANK ACCOUNTS 399

the whole list gets moved to a new sequence of addresses with more room. The
details of this are a more advanced topic. For now, the key takeaway for you is that
lists are arranged in consecutive memory addresses. This layout will be particularly
relevant when we get to chapter 27.

26.3 Practice: Data for Shared Bank Accounts

Let’s apply what we’ve been learning about sharing modifications to a real-world
problem: having bank accounts shared by multiple people (such as partners or
spouses). A bank wants to allow multiple customers to manage the same account
(meaning each person deposits to or withdraws from the same shared balance). Our
task is to define data structures for managing bank customers and their (shared)
accounts.

How might you set up the data about customers and their accounts? To keep
things simple, we’ll limit the information about customers to their names (leaving
out phone numbers, etc), and information about accounts to their balances (leaving
out interest rates, etc).

In a full banking system, we might want to allow customers to be part of mul-
tiple accounts as well. This would suggest the following data structure:

@dataclass

class Account:

id : int

balance : int

owners : lst # of Accounts

@dataclass

class Customer:

name : str

accts : lst # of Accounts

You can have these kinds of circular connections, in which customers connect
to accounts which connect to customers. In the interest of letting us focus on basic
sharing and memory, however, let’s simplify our data as follows: accounts don’t
track who their customers are, and each customer has only one account:

@dataclass

class Account:

id : int

balance : int

400 CHAPTER 26. REVISITING LISTS AND VARIABLES

@dataclass

class Customer:

name : str

acct : Account

Do Now!

We could consider making the acct field hold an ID number, rather than an
Account datum? Should we do this? Why or why not?

This question revisits a point that we made when linking people into ancestry trees
rather than store ancestors through their names: direct references to other values,
rather than going through names or id numbers, speeds up our access to related
data.

Do Now!

Write an expression that creates a new Customer named Tina with a new
Account. Give the new account ID number 1 and initial balance of 100.

Do Now!

Assume we gave the name t_cust to the Customer datum created in the
previous exercise. Draw the memory diagram that contains t_cust and the
new data values.

In code, you should have written:

t_cust = Customer("Tina", Account(1, 100))

The corresponding directory-memory diagram would be:
Directory

• t_cust

→@1015

Heap

• @1015:
Customer("Tina", Account(1, 100))

26.3. PRACTICE: DATA FOR SHARED BANK ACCOUNTS 401

Do Now!

Tina wishes to deposit $50 to her account. Write a statement using t_cust to
perform the deposit. Also show the changes that this makes to the dictionary-
memory diagram.

The following code performs the update:

t_cust.acct.balance = t_cust.acct.balance + 50

Since the update is to a field of t_cust (rather than to the t_cust variable itself),
we make the update in memory (specifically, to the balance field).

Directory

• t_cust

→@1015

Heap

• @1015:
Customer("Tina", Account(1, 150))

Now, let’s try a more complicated situation. Maria and Jorge are new customers
who want to share an account. Sharing means that either of them can make deposits
or withdrawals and both will see any changes to their shared balance.

Do Now!

Draw a memory diagram with Customer data for each of Maria and Jorge
and a shared Account with a balance of 250. Don’t write the code, just draw
the diagram that the code should produce.

You should have ended up with something like the following (perhaps with a
name for the Account, perhaps not (either works).

Directory

• m_cust1

→@1016

• j_cust1

→@1017

402 CHAPTER 26. REVISITING LISTS AND VARIABLES

Heap

• @1015:
Account(id:2, balance:250)

• @1016:
Customer("Maria", @1015))

• @1017:
Customer("Jorge", @1015))

Now, we need to figure out the code to produce this diagram.

Do Now!

Here are four possible proposals for code to create the shared account. Which
one(s) produce the desired memory diagram? You might find it useful to draw
the memory diagrams for each approach and compare them to the one that
we want.

Version 1

m_cust1 = Customer("Maria", Account(2, 250))

j_cust1 = Customer("Jorge", Account(2, 250))

Version 2

m_cust2 = Customer("Maria", Account(2, 250))

j_cust2 = Customer("Jorge", m_cust2.acct)

Version 3

new_acct = Account(2, 250)

m_cust3 = Customer("Maria", new_acct)

j_cust3 = Customer("Jorge", new_acct)

Version 4

init_bal = 250

m_cust4 = Customer("Maria", Account(2, init_bal))

j_cust4 = Customer("Jorge", Account(2, init_bal))

We want to end up with a single account in the heap. Versions 1 and 4 create
two separate Account data, so we can rule them out. The difference between
versions 2 and 3 lies in the directory: version 3 names the shared Account in the
directory, while version 2 does not. Either way, the Account is accessible from the
directory (by going through the m_cust and j_cust variables.

26.4. CIRCULAR REFERENCES 403

Do Now!

Let’s assume we set up the accounts with version 3. Jorge wants to make a
deposit of 100. Which of the following lines of code are appropriate if Maria
should be able to access the deposited funds?

1. new_acct = Account(2, new_acct.balance + 100)

2. new_acct.balance = new_acct.balance + 100

3. j_cust3.acct = Account(2, new_acct.balance + 100)

4. j_cust3.acct.balance = new_acct.balance + 100

5. j_cust3.acct.balance = j_cust3.acct.balance + 100

For the deposit to be visible to Maria, we have to modify the account that
Maria shares with Jorge. We can’t make a new account, so lines 1 and 3 are not
appropriate.

Whether lines 2 and 4 work depends on whether new_acct still refers to the
memory location of Jorge’s (and Maria’s) account. If it does, both lines work
(though the intent isn’t as clear with line 2, which doesn’t indicate that the goal
is to update Jorge’s balance). But if new_acct now refers elsewhere, neither line
works: line 2 puts the adjusted balance in the wrong account, while line 4 may
compute the new balance from the wrong existing balance.

Line 5 works fine.

26.4 Circular References

At the start of this chapter, we said that we wanted each Account to also contain
a reference to the Customer(s) who own the account. We deferred setting up this
reference, but return to it now. Here are the desired dataclasses (to keep things
simple, we’ll allow a Customer to have only one Account.

@dataclass

class Account:

id: int

balance: int

owners: list # of Customer

404 CHAPTER 26. REVISITING LISTS AND VARIABLES

@dataclass

class Customer:

name: str

acct: Account

Let’s create a new Customer with a new Account using these dataclasses:

new_acct = Account(5, 150, Customer("Elena", __________))

How do we fill in the blank in the Customer? We’d like to say new_acct but
Python (and most other languages) will raise an error that new_acct isn’t defined.
Why is that?

When given this assignment, Python first evaluates the right side, to get the
value or memory location that should be stored in the directory for new_acct. If
we filled in the blank with new_acct, Python would start by running:

Account(5, 150, Customer("Elena", new_acct))

To do this, it needs to look up new_acct in the directory, but that name isn’t in
the directory yet (it only goes in after we compute the value to store for that name).
Hence the error.

To get around this, we leverage the ability to update the contents of memory
locations after names for data are in place. We’ll create the Account partially, but
without filling in the Customer. Then we create the Customer to reference the new
Account. Then we update the Account owners with the now-created Customer:

new_acct = Account(5, 150, []) # note the empty Customer list

new_cust = Customer("Elena", new_acct)

new_acct.owners = [new_cust]

Note here that each part gets a spot in memory and an entry in the directory,
but the datum hasn’t been finished yet. Once we have the datum set up in memory
though, we can update the owners field to the correct value.

Here’s what this looks like at the level of memory and the directory after run-
ning the first two lines:

Directory

• new_acct

→@1016

• new_cust

→@1017

26.4. CIRCULAR REFERENCES 405

Heap

• @1015: []

• @1016:
Account(5, 150, @1015)

• @1017:
Customer("Elena", @1016)

Then, when we run the third line, we create a new list containing new_cust

and update the owner list within new_acct:
Directory

• new_acct

→@1016

• new_cust

→@1017

Heap

• @1015: []

• @1016:
Account(5, 150, @1018)

• @1017:
Customer("Elena", @1016)

• @1018: [@1017]
Notice that the two owners lists each live in memory but aren’t associated with

names in the directory. They are only reachable going through new_acct, and after
the update, the empty list isn’t reachable at all.

Do Now!

Why did a new list get created (at address @1018) rather than have new_cust
get added to the list at address @1015?

We used new_acct.owners = [new_cust] to finish setting up the owners

field, and the right-hand side of = creates a new list. If we had instead written
new_acct.owners.append(new_cust), then @1017 would have gone into the
list stored at @1015, as follows:

Directory

406 CHAPTER 26. REVISITING LISTS AND VARIABLES

• new_acct

→@1016

• new_cust

→@1017

Heap

• @1015: [@1017]

• @1016:
Account(5, 150, @1017)

• @1017:
Customer("Elena", @1016)

Either approach works. However, not all languages give you an operation like
append that modifies the contents of an existing list (Pyret didn’t, at least not the
portion that we saw). We therefore chose to show you the more general approach
here.

Testing Circular Data

When you want to write a test involving circular data, you can’t write out the
circular data manually. For example, imagine that we wanted to write out new_acct
from the previous examples:

test("data test", new_acct,

Account(5, 150, [Customer("Elena", Account(5, 150, ...)])

Because of the circularity, you can’t finish writing down the data. You have two
options: write tests in terms of the names of data, or write tests on the components
of the data.

Here’s an example that illustrates both. After setting up the account, we might
want to check that the owner of the new account is the new customer:

test("new owner", new_acct.owner, new_cust)

Here, rather than write out the Customer explicitly, we use the name of the
existing item in the directory. This doesn’t require you to write ellipses. We also
focused on just the owner component, as a part of the Account value that we
expected to change.

26.5. THE MANY ROLES OF VARIABLES 407

Revisiting Variables: A Function to Create Accounts for New Cus-
tomers

What if we turned the sequence for creating dependencies between customers and
their accounts into a function? We might get something like the following:

def create_acct(new_id: int, init_bal: int, cust_name: str) -> Account:

new_acct = Account(new_id, init_bal, []) # note the empty Customer list

new_cust = Customer(cust_name, new_acct)

new_acct.owners.append(new_cust)

return new_acct

This looks useful, but it does have a flaw: we could accidentally create two
accounts with the same id number. It would be better to maintain a variable con-
taining the next unused account id, which would guaranteed that a specific id gets
used only once.

Do Now!

How might you modify the code to do this? Which concepts seem relevant?

The next available id keeps changing as the program runs. This suggests that
we need a variable in the directory that gets modified after each account is created.
Here’s how we might set that up:

next_id = 1 # stores the next available id number

def create_acct(init_bal: int, cust_name: str) -> Account:

global next_id

new_acct = Account(next_id, init_bal, [])

next_id = next_id + 1

new_cust = Customer(cust_name, new_acct)

new_acct.owners.append(new_cust)

return new_acct

Here, we create the next_id variable to hold the next id number to use. When
we create an Account, we update next_id to the next unused number. Note that
we also took the new account’sid number out of the parameters for the function.
Problem solved!

26.5 The Many Roles of Variables

At this point, we have used the single coding construct of a variable in the directory
for multiple purposes. It’s worth stepping back and calling those out explicitly. In

408 CHAPTER 26. REVISITING LISTS AND VARIABLES

general, variables serve one of the following purposes:

1. Tracking progress of a computation (e.g., the running value of a result in a
for-loop)

2. Sharing data across functions (e.g., casting and counting votes)

3. Maintaining information across multiple calls to a single function (e.g., the
next-id variable)

4. Naming a local or intermediate value in a computation

Each of these uses involves a different programming pattern. The first creates
a variable locally within a function. The second two create top-level variables and
require using global in functions that modify the contents. The third is different
from the second, however, in that the third is only meant to be used by a single
function. Ideally, there would be a way to not expose the variable to all functions
in the third case. Indeed, many programming languages (including Pyret) make
it easy to do that. This is harder to achieve with introductory-level concepts in
Python, however. The fourth is more about local names rather than variables, in
that our code never updates the value after the variable is created.

We call out these three roles precisely because they invoke different code pat-
terns, despite using the same fine-grained concept (assigning a new value to a
variable). When you look at a new programming problem, you can ask yourself
whether the problem involves one of these purposes, and use that to guide your
choice of pattern to use.

26.6 Managing All Accounts

So far, we have created individual customers and accounts and named them in the
directory. This is fine for a small number of accounts but a realistic bank manages
tens of thousands (if not millions) of accounts. Naming individual accounts doesn’t
scale with that many accounts. Instead, a bank would maintain something like a
list or table of all of the accounts, with functions to locate specific accounts (say
by their ID numbers). For example:

all_accts = [Account(8, 100, []),

Account(2, 300, []),

Account(10, 225, []),

Account(3, 200, []),

Account(1, 120, []),

26.6. MANAGING ALL ACCOUNTS 409

...

]

Do Now!

Modify create_acct to add the newly-created account to theall_accts
list.

next_id = 1 # stores the next available id number

all_accts = [] # stores all of the accounts

def create_acct(init_bal: int, cust_name: str) -> Account:

global next_id

new_acct = Account(next_id, init_bal, [])

all_accts.append(new_acct) # <-- this is the new line

next_id = next_id + 1

new_cust = Customer(cust_name, new_acct)

new_acct.owners.append(new_cust)

return new_acct

Exercise

Draw the memory diagram that results from the following code:

create_acct(100, "Tina")

create_acct(250, "Elena")

When someone asks for their balance, they usually provide their account num-
ber. This suggests that we need a function that takes an account id and returns the
Account value with that id. From there, we can dig into the account to get the
balance.

Exercise

Write a function find_acct that takes an id number and returns the Account
(from all_accts) with that id number.

Here’s one solution:

def find_acct(which_id : int) -> Account:

"""returns the account with the given id number"""

for acct in all_accts:

410 CHAPTER 26. REVISITING LISTS AND VARIABLES

if acct.id == which_id:

return acct

raise ValueError("no account has id " + str(which_id))

def test_find():

test("match num", find_acct(3).id, 3)

test("match exactly", find_acct(1).id, 1)

testValueError("no account", lambda: find_acct(22))

This example shows how to report errors in Python. As in Pyret, there is a
raise construct for reporting errors. In Python, however, rather than raise just a
string, you raise a particular type of data called a ValueError that contains the
string. (There are other kinds of errors too, but ValueError will suffice for what
this book will do).

Exercise

Leverage find_acct to write the following two functions:

def deposit(which_id: int, amount: double) {}

def close(which_id: int) {}

As these exercises show, the find_acct function becomes a valuable helper
for many other functions. This raises a question: how fast is find_acct? Here, we
have to search through all of the accounts to locate the one with a specific id before
doing the operation we actually care about. With millions of accounts, this seems
like it could get expensive. We’ll explore this more deeply in the next chapter.

Chapter 27

Hashtables and Dictionaries

At the end of section 26.6, we had created a list of Account values and written a
function to search through that list to find the account with a specific ID number.
We noted that finding an individual account could require us to check every account
in the list (as we check accounts one at a time in the for loop), which could start
to get expensive as the bank scales to more customers.

Let’s step back however, and make two observations about this problem:

1. Every account has a unique ID number

2. We have a function that needs to retrieve accounts based on this unique ID
number

In this case, we can use a different data structure, called a hashtable or dictio-
nary (different languages use different terms for this same concept; Python uses
“dictionary”). Dictionaries are designed for precisely such a scenario: we have a
set of values (the accounts) that we wish to access using a piece of information (the
ID number) that is unique to each value. The piece of information that we use for
access is called the key. The key does not need to be a field in the data value, but it
can be (as with accounts).

To set up a dictionary, we write a series of entries of the form

key: value

Here’s what a dictionary mapping ID numbers to accounts might look like:

accts_dict = {5: Account(5, 225, []),

3: Account(3, 200, []),

2: Account(2, 300, []),

4: Account(4, 75, []),

411

412 CHAPTER 27. HASHTABLES AND DICTIONARIES

1: Account(1, 100, [])

}

In terms of notation, we can create a dictionary by placing a collection of
key: value pairs between curly braces, separated by commas. The dictionary
shown here has five account IDs that map to accounts with those same ID num-
bers. There is no order within a dictionary, so it doesn’t matter which order we
write the pairs within the sequence.

Now, if we want to get the account with ID 1 from the dictionary, we can simply
write:

accts_dict[1]

This says "in the accts_dict dictionary, get the value associated with key
1. Evaluting this expression will produce Account(1, 100, []). If the key you
request isn’t in the dictionary, Python will raise an error. However, you check
whether a key is in the dictionary before trying to use it, as follows:

if 6 in accts_dict:

accts_dict(6)

If we want to change the value associated with a key, we use an assignment
statement of the following form:

dictionary[key] = new_value

To add a new key (and its value) to a dictionary, we use the same notation as
for updating a value, just with an unused key:

accts_dict[6] = Account(6, 150, [])

Finally, to remove a key (and its value) from the dictionary, we write

del dictionary[key]

27.1 Searching by Criteria Other than Keys

What if we wanted to find all of the accounts with balances below 100? For this,
we have to search through all of the key-value pairs and check their balances. This
again sounds like we need a for loop. What does that look like on a dictionary
though?

Turns out, it looks much like writing a for loop on a list (at least in Python).
Here’s a program that creates a list of the accounts with balances below 100:

27.2. DICTIONARIES WITH MORE COMPLEX VALUES 413

below_100 = []

the room variable takes on each key in the dictionary

for ID in accts_dict:

if accts_dict[ID].balance < 100:

below_100.append(accts_dict[ID])

Here, the for-loop iterates over the keys. Within the loop, we use each key
to retrieve its corresponding Account, perform the balance check on the Account,
then put the Account in our running list if it meets our criterion.

Exercise

Create a dictionary that maps names of classrooms or meeting rooms to the
numbers of seats that they have. Write expressions to:

1. Look up how many seats are in a specific room

2. Change the capacity of a specific room to have 10 more seats than it
did initially

3. Find all rooms that can seat at least 50 students

27.2 Dictionaries with More Complex Values

Do Now!

A track-and-field tournament needs to manage the names of the players on
the individual teams that will be competing. For example, “Team Red” has
“Shaoming” and “Lijin”, “Team Green” contains “Obi” and ”Chinara”, and
“Team Blue” has “Mateo” and “Sophia”. Come up with a way to organize the
data that will allow the organizers to easily access the names of the players
on each team, keeping in mind that there could be many more teams than just
the three listed here.

This feels like a dictionary situation, in that we have a meaningful key (the team
name) with which we want to access values (the names of the players). However,
we have already said that dictionaries allow only one value per key. Consider the
following code:

players = {}

players["Team Red"] = "Shaoming"

players["Team Red"] = "Lijin"

414 CHAPTER 27. HASHTABLES AND DICTIONARIES

Do Now!

What would be in the dictionary after running this code? If you aren’t sure,
try it out!

How do we store multiple player names under the same key? The insight here is
that the collection of players, not an individual player, is what we want to associate
with the team name. We should therefore store a list of players under each key, as
follows:

players = {}

players["Team Red"] = ["Shaoming", "Lijin"]

players["Team Green"] = ["Obi", "Chinara"]

players["Team Blue"] = ["Mateo", "Sophia"]

The values in a dictionary aren’t limited to being basic values. They can be
arbitrarily complex, including lists, tables, or even other dictionaries (and more!).
There is still only one value per key, which is the requirement of a dictionary.

27.3 Using Structured Data as Keys

Using structured data as keys is also possible, but it’s more subtle than using struc-
tured data as values. This has to do with how dictionaries work. Dictionaries
depend on the keys being values that cannot be internally modified. What do we
mean? An entire Account datum, for example, could not be used as a key because
we want to be able to modify the balance, which is a field within the account.

A dataclass value can be used as a key as long as the fields will never be mod-
ified. For example, let’s return to the earlier example that mapped room names to
their numbers of seats. Imagine that the office that maintains rooms wants to be
able to access rooms by ranges of seats (such as 0-29, 30-49, and 50-100). In this
case, they would want to make a dataclass for a range and use that as a key.

@dataclass

class Range:

low: int

high: str

{ Range(0,29): ["West Wing 200", "North Wing 110"],

Range(30,49): ["North Wing 150", "South Wing 320"],

...

}

27.3. USING STRUCTURED DATA AS KEYS 415

Since the fields of a range aren’t going to change, this is a reasonable datum to
use as a key. To make Python accept this dictionary, however, we have to indicate
that we will not be modifying the field values of Range. You do this with an
additional piece on the dataclass annotation:

@dataclass(frozen=True)

class Range:

low: int

high: str

The frozen annotation says "the components of this class cannot be changed".
If you try to assign to a component of a frozen class such as Flight, Python will
produce an error. There actually are ways to use

values with changing
components as keys, but they
are more advanced than this
book covers. If you want to read
details for yourself, look up
__hash__ methods in Python.

416 CHAPTER 27. HASHTABLES AND DICTIONARIES

Part VI

Advanced Topics

417

Chapter 28

Algorithms That Exploit State

28.1 Disjoint Sets Redux

Here’s how we can use this to implement union-find afresh. We will try to keep
things as similar to the previous version [section 22.8.5] as possible, to enhance
comparison.

First, we have to update the definition of an element, making the parent field
be mutable:

data Element:

| elt(val, ref parent :: Option<Element>)

end

To determine whether two elements are in the same set, we will still rely on fynd.
However, as we will soon see, fynd no longer needs to be given the entire set of
elements. Because the only reason is-in-same-set consumed that set was to
pass it on to fynd, we can remove it from here. Nothing else changes:

fun is-in-same-set(e1 :: Element, e2 :: Element) -> Boolean:

s1 = fynd(e1)

s2 = fynd(e2)

identical(s1, s2)

end

Updating is now the crucial difference: we use mutation to change the value of the
parent:

fun update-set-with(child :: Element, parent :: Element):

child!{parent: some(parent)}

end

419

420 CHAPTER 28. ALGORITHMS THAT EXPLOIT STATE

In parent: some(parent), the first parent is the name of the field, while the
second one is the parameter name. In addition, we must use some to satisfy the
option type. Naturally, it is not none because the entire point of this mutation is to
change the parent to be the other element, irrespective of what was there before.

Given this definition, union also stays largely unchanged, other than the change
to the return type. Previously, it needed to return the updated set of elements; now,
because the update is performed by mutation, there is no longer any need to return
anything:

fun union(e1 :: Element, e2 :: Element):

s1 = fynd(e1)

s2 = fynd(e2)

if identical(s1, s2):

s1

else:

update-set-with(s1, s2)

end

end

Finally, fynd. Its implementation is now remarkably simple. There is no longer
any need to search through the set. Previously, we had to search because after
union operations have occurred, the parent reference might have no longer been
valid. Now, any such changes are automatically reflected by mutation. Hence:

fun fynd(e :: Element) -> Element:

cases (Option) e!parent:

| none => e

| some(p) => fynd(p)

end

end

Optimizations

Look again at fynd. In the some case, the element bound to e is not the set name;
that is obtained by recursively traversing parent references. As this value returns,
however, we don’t do anything to reflect this new knowledge! Instead, the next
time we try to find the parent of this element, we’re going to perform this same
recursive traversal all over again.

Using mutation helps address this problem. The idea is as simple as can be:
compute the value of the parent, and update it.

fun fynd(e :: Element) -> Element:

28.2. SET MEMBERSHIP BY HASHING REDUX 421

cases (Option) e!parent block:

| none => e

| some(p) =>

new-parent = fynd(p)

e!{parent: some(new-parent)}

new-parent

end

end

Note that this update will apply to every element in the recursive chain to find the
set name. Therefore, applying fynd to any of those elements the next time around
will benefit from this update. This idea is called path compression.

There is one more interesting idea we can apply. This is to maintain a rank
of each element, which is roughly the depth of the tree of elements for which that
element is their set name. When we union two elements, we then make the one
with larger rank the parent of the one with the smaller rank. This has the effect
of avoiding growing very tall paths to set name elements, instead tending towards
“bushy” trees. This too reduces the number of parents that must be traversed to
find the representative.

Analysis

This optimized union-find data structure has a remarkble analysis. In the worst
case, of course, we must traverse the entire chain of parents to find the name ele-
ment, which takes time proportional to the number of elements in the set. However,
once we apply the above optimizations, we never need to traverse that same chain
again! In particular, if we conduct an amortized analysis over a sequence of set
equality tests after a collection of union operations, we find that the cost for sub-
sequent checks is very small—indeed, about as small a function can get without
being constant. The actual analysis is quite sophisticated; it is also one of the most
remarkable algorithm analyses in all of computer science.

28.2 Set Membership by Hashing Redux

We have already seen solutions to set membership. First we saw how to represent
sets as lists [section 19.1], then as (balanced) binary trees [section 19.2.3]. With Don’t confuse this with

union-find, which is a different
kind of problem on sets
[section 28.1].

this we were able to reduce insertion and membership to logarithmic time in the
number of elements. Along the way, we also learned that the essence of using these
representations was to reduce any datatype to a comparable, ordered element—for
efficiency, usually a number [section 19.2.1]—which we called hashing.

http://en.wikipedia.org/wiki/Disjoint-set_data_structure

422 CHAPTER 28. ALGORITHMS THAT EXPLOIT STATE

Let us now ask whether we can use these numbers in any other way. Suppose
our set has only five elements, which map densely to the values between 0 and
4. We can then have a five element list of boolean values, where the boolean at
each index of the list indicates whether the element corresponding to that position
is in the set or not. Both membership and insertion, however, require traversing
potentially the entire list, giving us solutions linear in the number of elements.

That’s not all. Unless we can be certain that there will be only five elements,
we can’t be sure to bound the size of the representation. Also, we haven’t yet
shown how to actually hash in a way that makes the representation dense; barring
that, our space consumption gets much worse, in turn affecting time.

There is, actually, a relatively simple solution to the problem of reducing num-
bers densely to a range: given the hash, we apply modular arithmetic. That is, if
we want to use a list of five elements to represent the set, we simply compute the
hash’s modulo five. This gives us an easy solution to that problem.

Except, of course, not quite: two different hashes could easily have the same
modulus. That is, suppose we need to record that the set contains the (hash) value
5; the resulting list would be

[list: true, false, false, false, false]

Now suppose we want to ask whether the value 15 is in the set; we cannot tell from
this representation whether it’s in the set or not, because we can’t tell whether the
true represents 5, 15, 25, or any other value whose modulus 5 is 0. Therefore, we
have to record the actual elements in the set; for type-consistency, we should be
using an Option:

[list: some(5), none, none, none, none]

Now we can tell that 5 is in the set while 4 is not. However, this now makes it
impossible to have both 5 and 10 in the set; therefore, our real representation needs
to be a list at each position:

[list: [list: 5], empty, empty, empty, empty]

If we also add 10 to the set, we get:

[list: [list: 5, 10], empty, empty, empty, empty]

and now we can tell that both 5 and 10 are in the set, but 15 is not. These sub-lists
are known as buckets.

Good; now we have another way of representing sets so we can check for
membership. However, in the worst case one of those lists is going to contain all
elements in the set, and we may have to traverse the entire list to find an element in
it, which means membership testing will take time linear in the number of elements.

28.2. SET MEMBERSHIP BY HASHING REDUX 423

Insertion, in turn, takes time proportional to the size of the modulus because we
may have to traverse the entire outer list to get to the right sub-list.

Can we improve on this?

Improving Access Time

Given that we currently have no way of ensuring we won’t get hash collisions, for
now we’re stuck with a list of elements at each position that could be the size of
the set we are trying to represent. Therefore, we can’t get around that (yet). But,
we’re currently paying time in the size of the outer list just to insert an element,
and surely we can do better than that!

We can, but it requires a different data structure: the array. You can look up There are other data structures
that will also do better, but the
one we’re about to see is
important and widely used.

arrays in the Pyret documentation. The key characteristics of an array are:

• Accessing the nth element of an array takes constant, not linear, time in n.
This is sometimes known as random-access, because it takes the same time
to access any random element, as opposed to just a known element.

• Arrays are updated by mutation. Thus, a change to an array is seen by all
references to the array.

The former property warrants some discussion: how can an array provide random
access whereas a list requires time linear in the index of the element we’re ac-
cessing? This is because of a trade-off: a list can be extended indefinitely as the
program extends, but an array cannot. An array must declare its size up front, and
cannot grow without copying all the elements into a larger array. Therefore, we
should only use arrays when we have a clearly identifiable upper-bound on their
size (and that bound is not too large, or else we may not even be able to find that
much contiguous space in the system). But the problem we’re working on has
exactly this characteristic.

So let’s try defining sets afresh. We start with an array of a fixed size, with
each element an empty list:

SIZE = 19

v = array-of(empty, SIZE)

We need to use modular arithmetic to find the right bucket:

fun find-bucket(n): num-modulo(n, SIZE) end

With this, we can determine whether an element is in the set:

fun get-bucket(n): array-get-now(v, find-bucket(n)) end

fun is-in(n): get-bucket(n).member(n) end

424 CHAPTER 28. ALGORITHMS THAT EXPLOIT STATE

To actually add an element to the set, we put it in the list associated with the
appropriate bucket:

fun set-bucket(n, anew): array-set-now(v, find-bucket(n), anew) end

fun put(n):

when not(is-in(n)):

set-bucket(n, link(n, get-bucket(n)))

end

end

Checking whether the element is already in the bucket is an important part of our
complexity argument because we have implicitly assumed there won’t be duplicate
elements in buckets.

Exercise

What impact do duplicate elements have on the complexity of operations?

The data structure we have defined above is known as a hash table (which is
a slightly confusing name, because it isn’t really a table of hashes, but this is the
name used conventionally in computer science).

Better Hashing

Using arrays therefore appears to address one issue: insertion. Finding the relevant
bucket takes constant time, linking the new element takes constant time, and so
the entire operation takes constant time...except, we have to also check whether the
element is already in the bucket, to avoid storing duplicates. We have gotten rid of
the traversal through the outer list representing the set, but the member operation
on the inner list remains unchanged. In principle it won’t, but in practice we can
make it much better.

Note that collisions are virtually inevitable. If we have uniformly distributed
data, then collisions show up sooner than we might expect. Therefore, it is wise toThis follows from the reasoning

behind what is known as the
birthday problem, commonly
presented as how many people
need to be in a room before the
likelihood that two of them
share a birthday exceeds some
percentage. For the likelihood
to exceed half we need just 23
people!

prepare for the possibility of collisions.
The key is to know something about the distribution of hash values. For in-

stance, if we knew our hash values are all multiples of 10, then using a table size of
10 would be a terrible idea (because all elements would hash to the same bucket,
turning our hash table into a list). In practice, it is common to use uncommon
prime numbers as the table size, since a random value is unlikely to have it as a di-
visor. This does not yield a theoretical improvement (unless you can make certain
assumptions about the input, or work through the math very carefully), but it works

http://en.wikipedia.org/wiki/Birthday_problem

28.2. SET MEMBERSHIP BY HASHING REDUX 425

well in practice. In particular, since the typical hashing function uses memory ad-
dresses for objects on the heap, and on most systems these addresses are multiples
of 4, using a prime like 31 is often a fairly good bet.

Bloom Filters

Another way to improve the space and time complexity is to relax the properties
we expect of the operations. Right now, set membership gives perfect answers,
in that it answers true exactly when the element being checked was previously
inserted into the set. But suppose we’re in a setting where we can accept a more
relaxed notion of correctness, where membership tests can “lie” slightly in one
direction or the other (but not both, because that makes the representation almost
useless). Specifically, let’s say that “no means no” (i.e., if the set representation
says the element isn’t present, it really isn’t) but “yes sometimes means no” (i.e.,
if the set representation says an element is present, sometimes it might not be). In
short, if the set says the element isn’t in it, this should be guaranteed; but if the set
says the element is present, it may not be. In the latter case, we either need some
other—more expensive—technique to determine truth, or we might just not care.

Where is such a data structure of use? Suppose we are building a Web site that
uses password-based authentication. Because many passwords have been leaked in
well-publicized breaches, it is safe to assume that hackers have them and will guess
them. As a result, we want to not allow users to select any of these as passwords.
We could use a hash-table to reject precisely the known leaked passwords. But
for efficiency, we could use this imperfect hash instead. If it says “no”, then we
allow the user to use that password. But if it says “yes”, then either they are using
a password that has been leaked, or they have an entirely different password that,
purely by accident, has the same hash value, but no matter; we can just disallow
that password as well. A related use is for filtering out

malicious Web sites. The URL
shortening system, bitly, uses it
for this purpose.

Another example is in updating databases or memory stores. Suppose we have
a database of records, which we update frequently. It is often more efficient to
maintain a journal of changes: i.e., a list that sequentially records all the changes
that have occurred. At some interval (say overnight), the journal is “flushed”,
meaning all these changes are applied to the database proper. But that means ev-
ery read operation has become highly inefficient, because it has to check the entire
journal first (for updates) before accessing the database. Again, here we can use
this faulty notion of a hash table: if the hash of the record locator says “no”, then
the record certainly hasn’t been modified and we go directly to the database; if it
says “yes” then we have to check the journal.

We have already seen a simple example implementation of this idea earlier,
when we used a single list (or array) of booleans, with modular arithmetic, to rep-

http://word.bitly.com/post/28558800777/dablooms-an-open-source-scalable-counting-bloom
http://word.bitly.com/post/28558800777/dablooms-an-open-source-scalable-counting-bloom

426 CHAPTER 28. ALGORITHMS THAT EXPLOIT STATE

resent the set. When the set said 4 was not present, this was absolutely true; but
when it said 5 and 10 are both present, only one of these was present. The advan-
tage was a huge saving in space and time: we needed only one bit per bucket, and
did not need to search through a list to answer for membership. The downside, of
course, was a hugely inaccurate set data structure, and one with correlated failure
tied to the modulus.

There is a simple way to improve this solution: instead of having just one array,
have several (but a fixed number of them). When an element is added to the set, it
is added to each array; when checking for membership, every array is consulted.
The set only answers affirmatively to membership if all the arrays do so.

Naturally, using multiple arrays offers absolutely no advantage if the arrays are
all the same size: since both insertion and lookup are deterministic, all will yield
the same answer. However, there is a simple antidote to this: use different array
sizes. In particular, by using array sizes that are relatively prime to one another, we
minimize the odds of a clash (only hashes that are the product of all the array sizes
will fool the array).

This data structure, called a Bloom Filter, is a probabilistic data structure. Un-
like our earlier set data structure, this one is not guaranteed to always give the right

answer; but contrary to theNspace-time tradeoff , we save both space and time
by changing the problem slightly to accept incorrect answers. If we know some-
thing about the distribution of hash values, and we have some acceptable bound of
error, we can design hash table sizes so that with high probability, the Bloom Filter
will lie within the acceptable error bounds.

28.3 Avoiding Recomputation by Remembering Answers

We have on several instances already referred to a Nspace-time tradeoff . The
most obvious tradeoff is when a computation “remembers” prior results and, in-
stead of recomputing them, looks them up and returns the answers. This is an
instance of the tradeoff because it uses space (to remember prior answers) in place
of time (recomputing the answer). Let’s see how we can write such computations.

An Interesting Numeric Sequence

Suppose we want to create properly-parenthesized expressions, and ignore all non-
parenthetical symbols. How many ways are there of creating parenthesized expres-
sions given a certain number of opening (equivalently, closing) parentheses?

If we have zero opening parentheses, the only expression we can create is the
empty expression. If we have one opening parenthesis, the only one we can con-

28.3. AVOIDING RECOMPUTATION BY REMEMBERING ANSWERS 427

struct is “()” (there must be a closing parenthesis since we’re interested only in
properly-parenthesized expressions). If we have two opening parentheses, we can
construct “(())” and “()()”. Given three, we can construct “((()))”, “(())()”, “()(())”,
“()()()”, and “(()())”, for a total of five. And so on. Observe that the solutions
at each level use all the possible solutions at one level lower, combined in all the
possible ways.

There is actually a famous mathematical sequence that corresponds to the num-
ber of such expressions, called the Catalan sequence. It has the property of growing
quite large very quickly: starting from the modest origins above, the tenth Catalan
number (i.e., tenth element of the Catalan sequence) is 16796. A simple recurrence
formula gives us the Catalan number, which we can turn into a simple program:

fun catalan(n):

if n == 0: 1

else if n > 0:

for fold(acc from 0, k from range(0, n)):

acc + (catalan(k) * catalan(n - 1 - k))

end

end

end

This function’s tests look as follows—
<catalan-tests> ::=

check:

catalan(0) is 1

catalan(1) is 1

catalan(2) is 2

catalan(3) is 5

catalan(4) is 14

catalan(5) is 42

catalan(6) is 132

catalan(7) is 429

catalan(8) is 1430

catalan(9) is 4862

catalan(10) is 16796

catalan(11) is 58786

end

but beware! When we time the function’s execution, we find that the first few
tests run very quickly, but somewhere between a value of 10 and 20—depending
on your machine and programming language implementation—you ought to see

http://en.wikipedia.org/wiki/Catalan_number

428 CHAPTER 28. ALGORITHMS THAT EXPLOIT STATE

things start to slow down, first a little, then with extreme effect.

Do Now!

Check at what value you start to observe a significant slowdown on your
machine. Plot the graph of running time against input size. What does this
suggest?

The reason the Catalan computation takes so long is precisely because of what
we alluded to earlier: at each level, we depend on computing the Catalan number
of all the smaller levels; this computation in turn needs the numbers of all of its
smaller levels; and so on down the road.

Exercise

Map the subcomputations of catalan to see why the computation time ex-
plodes as it does. What is the worst-case time complexity of this function?

Using State to Remember Past Answers

Therefore, this is clearly a case where trading space for time is likely to be of help.
How do we do this? We need a notion of memory that records all previous answers
and, on subsequent attempts to compute them, checks whether they are already
known and, if so, just returns them instead of recomputing them.

Do Now!

What critical assumption is this based on?

Naturally, this assumes that for a given input, the answer will always be the
same. As we have seen, functions with state violate this liberally, so typical stateful
functions cannot utilize this optimization. Ironically, we will use state to implement
this optimization, so we will have a stateful function that always returns the same
answer on a given input—and thereby use state in a stateful function to simulate a
stateless one. Groovy, dude!

First, then, we need some representation of memory. We can imagine several,
but here’s a simple one:

data MemoryCell:

| mem(in, out)

end

var memory :: List<MemoryCell> = empty

28.3. AVOIDING RECOMPUTATION BY REMEMBERING ANSWERS 429

Now how does catalan need to change? We have to first look for whether the
value is already in memory; if it is, we return it without any further computation,
but if it isn’t, then we compute the result, store it in memory, and then return it:

fun catalan(n :: Number) -> Number:

answer = find(lam(elt): elt.in == n end, memory)

cases (Option) answer block:

| none =>

result =

if n == 0: 1

else if n > 0:

for fold(acc from 0, k from range(0, n)):

acc + (catalan(k) * catalan(n - 1 - k))

end

end

memory := link(mem(n, result), memory)

result

| some(v) => v.out

end

end

And that’s it! Now running our previous tests will reveal that the answer computes
much quicker, but in addition we can dare to run bigger computations such as
catalan(50).

This process, of converting a function into a version that remembers its past
answers, is called memoization.

From a Tree of Computation to a DAG

What we have subtly done is to convert a tree of computation into a DAG over the
same computation, with equivalent calls being reused. Whereas previously each
call was generating lots of recursive calls, which induced still more recursive calls,
now we are reusing previous recursive calls—i.e., sharing the results computed
earlier. This, in effect, points the recursive call to one that had occurred earlier.
Thus, the shape of computation converts from a tree to a DAG of calls.

This has an important complexity benefit. Whereas previously we were per-
forming a super-exponential number of calls, now we perform only one call per
input and share all previous calls—thereby reducing catalan(n) to take a number
of fresh calls proportional to n. Looking up the result of a previous call takes time
proportional to the size of memory (because we’ve represented it as a list; better
representations would improve on that), but that only contributes another linear

430 CHAPTER 28. ALGORITHMS THAT EXPLOIT STATE

multiplicative factor, reducing the overall complexity to quadratic in the size of the
input. This is a dramatic reduction in overall complexity. In contrast, other uses of
memoization may result in much less dramatic improvements, turning the use of
this technique into a true engineering trade-off.

The Complexity of Numbers

As we start to run larger computations, however, we may start to notice that our
computations are starting to take longer than linear growth. This is because our
numbers are growing arbitrarily large—for instance, catalan(100) is 896519947090131496687170070074100632420837521538745909320—
and computations on numbers can no longer be constant time, contrary to what we
said earlier [section 18.4]. Indeed, when working on cryptographic problems, the
fact that operations on numbers do not take constant time are absolutely critical to
fundamental complexity results (and, for instance, the presumed unbreakability of
contemporary cryptography).

Abstracting Memoization

Now we’ve achieved the desired complexity improvement, but there is still some-
thing unsatisfactory about the structure of our revised definition of catalan: the
act of memoization is deeply intertwined with the definition of a Catalan number,
even though these should be intellectually distinct. Let’s do that next.

In effect, we want to separate our program into two parts. One part defines a
general notion of memoization, while the other defines catalan in terms of this
general notion.

What does the former mean? We want to encapsulate the idea of “memory”
(since we presumably don’t want this stored in a variable that any old part of the
program can modify). This should result in a function that takes the input we want
to check; if it is found in the memory we return that answer, otherwise we compute
the answer, store it, and return it. To compute the answer, we need a function that
determines how to do so. Putting together these pieces:

data MemoryCell:

| mem(in, out)

end

fun memoize-1<T, U>(f :: (T -> U)) -> (T -> U):

var memory :: List<MemoryCell> = empty

lam(n):

28.3. AVOIDING RECOMPUTATION BY REMEMBERING ANSWERS 431

answer = find(lam(elt): elt.in == n end, memory)

cases (Option) answer block:

| none =>

result = f(n)

memory := link(mem(n, result), memory)

result

| some(v) => v.out

end

end

end

We use the name memoize-1 to indicate that this is a memoizer for single-argument
functions. Observe that the code above is virtually identical to what we had before,
except where we had the logic of Catalan number computation, we now have the
parameter f determining what to do.

With this, we can now define catalan as follows:

rec catalan :: (Number -> Number) =

memoize-1(

lam(n):

if n == 0: 1

else if n > 0:

for fold(acc from 0, k from range(0, n)):

acc + (catalan(k) * catalan(n - 1 - k))

end

end

end)

Note several things about this definition:

1. We don’t write fun catalan(...): ...; because the procedure bound to
catalan is produced by memoize-1.

2. Note carefully that the recursive calls to catalan have to be to the function
bound to the result of memoization, thereby behaving like an object. Failing
to refer to this same shared procedure means the recursive calls will not be
memoized, thereby losing the benefit of this process.

3. We need to use rec for reasons we saw earlier [section 15.3].

4. Each invocation of memoize-1 creates a new table of stored results. There-
fore the memoization of different functions will each get their own tables
rather than sharing tables, which is a bad idea!

432 CHAPTER 28. ALGORITHMS THAT EXPLOIT STATE

Exercise

Why is sharing memoization tables a bad idea? Be concrete.

Edit-Distance for Spelling Correction

Text editors, word processors, mobile phones, and various other devices now rou-
tinely implement spelling correction or offer suggestions on (mis-)spellings. How
do they do this? Doing so requires two capabilities: computing the distance be-
tween words, and finding words that are nearby according to this metric. In this
section we will study the first of these questions. (For the purposes of this dis-
cussion, we will not dwell on the exact definition of what a “word” is, and just
deal with strings instead. A real system would need to focus on this definition in
considerable detail.)

Do Now!

Think about how you might define the “distance between two words”. Does
it define a metric space?

Exercise

Will the definition we give below define a metric space over the set of words?

Though there may be several legitimate ways to define distances between words,
here we care about the distance in the very specific context of spelling mistakes.
Given the distance measure, one use might be to compute the distance of a given
word from all the words in a dictionary, and offer the closest word (i.e., the one
with the least distance) as a proposed correction. Given such an intended use, weObviously, we can’t compute

the distance to every word in a
large dictionary on every single
entered word. Making this
process efficient constitutes the
other half of this problem.
Briefly, we need to quickly
discard most words as unlikely
to be close enough, for which a
representation such as a
bag-of-words (here, a bag of
characters) can greatly help.

would like at least the following to hold:

• That the distance from a word to itself be zero.

• That the distance from a word to any word other than itself be strictly posi-
tive. (Otherwise, given a word that is already in the dictionary, the “correc-
tion” might be a different dictionary word.)

• That the distance between two words be symmetric, i.e., it shouldn’t matter
in which order we pass arguments.

http://en.wikipedia.org/wiki/Metric_space
http://en.wikipedia.org/wiki/Bag-of-words_model

28.3. AVOIDING RECOMPUTATION BY REMEMBERING ANSWERS 433

Exercise

Observe that we have not included the triangle inequality relative to the prop-
erties of a metric. Why not? If we don’t need the triangle inequality, does
this let us define more interesting distance functions that are not metrics?

Given a pair of words, the assumption is that we meant to type one but actually
typed the other. Here, too, there are several possible definitions, but a popular one
considers that there are three ways to be fat-fingered:

1. we left out a character;

2. we typed a character twice; or,

3. we typed one character when we meant another.

In particular, we are interested in the fewest edits of these forms that need to be
performed to get from one word to the other. For natural reasons, this notion of
distance is called the edit distance or, in honor of its creator, the Levenshtein dis-
tance. See more on Wikipedia.

There are several variations of this definition possible. For now, we will con-
sider the simplest one, which assumes that each of these errors has equal cost. For
certain input devices, we may want to assign different costs to these mistakes; we
might also assign different costs depending on what wrong character was typed
(two characters adjacent on a keyboard are much more likely to be a legitimate
error than two that are far apart). We will return briefly to some of these consider-
ations later [section 28.3.3].

Under this metric, the distance between “kitten” and “sitting” is 3 because we
have to replace “k” with “s”, replace “e” with “i”, and insert “g” (or symmetrically,
perform the opposite replacements and delete “g”). Here are more examples:
<levenshtein-tests> ::=

check:

levenshtein(empty, empty) is 0

levenshtein([list:"x"], [list: "x"]) is 0

levenshtein([list: "x"], [list: "y"]) is 1

one of about 600

levenshtein(

[list: "b", "r", "i", "t", "n", "e", "y"],

[list: "b", "r", "i", "t", "t", "a", "n", "y"])

is 3

http://en.wikipedia.org/wiki/Levenshtein_distance

http://en.wikipedia.org/wiki/Levenshtein_distance

434 CHAPTER 28. ALGORITHMS THAT EXPLOIT STATE

levenshtein(

[list: "k", "i", "t", "t", "e", "n"],

[list: "s", "i", "t", "t", "i", "n", "g"])

is 3

levenshtein(

[list: "k", "i", "t", "t", "e", "n"],

[list: "k", "i", "t", "t", "e", "n"])

is 0

http://en.wikipedia.org/wiki/Levenshtein_distance

levenshtein(

[list: "S", "u", "n", "d", "a", "y"],

[list: "S", "a", "t", "u", "r", "d", "a", "y"])

is 3

http://www.merriampark.com/ld.htm

levenshtein(

[list: "g", "u", "m", "b", "o"],

[list: "g", "a", "m", "b", "o", "l"])

is 2

http://www.csse.monash.edu.au/~lloyd/tildeStrings/Alignment/92.IPL.html

levenshtein(

[list: "a", "c", "g", "t", "a", "c", "g", "t", "a", "c", "g", "t"],

[list: "a", "c", "a", "t", "a", "c", "t", "t", "g", "t", "a", "c", "t"])

is 4

levenshtein(

[list: "s", "u", "p", "e", "r", "c", "a", "l", "i",

"f", "r", "a", "g", "i", "l", "i", "s", "t"],

[list: "s", "u", "p", "e", "r", "c", "a", "l", "y",

"f", "r", "a", "g", "i", "l", "e", "s", "t"])

is 2

end

The basic algorithm is in fact very simple:
<levenshtein> ::=

rec levenshtein :: (List<String>, List<String> -> Number) =

<levenshtein-body>

where, because there are two list inputs, there are four cases, of which two are
symmetric:
<levenshtein-body> ::=

lam(s, t):

28.3. AVOIDING RECOMPUTATION BY REMEMBERING ANSWERS 435

<levenshtein-both-empty>

<levenshtein-one-empty>

<levenshtein-neither-empty>

end

If both inputs are empty, the answer is simple:
<levenshtein-both-empty> ::=

if is-empty(s) and is-empty(t): 0

When one is empty, then the edit distance corresponds to the length of the other,
which needs to inserted (or deleted) in its entirety (so we charge a cost of one per
character):
<levenshtein-one-empty> ::=

else if is-empty(s): t.length()

else if is-empty(t): s.length()

If neither is empty, then each has a first character. If they are the same, then there
is no edit cost associated with this character (which we reflect by recurring on the
rest of the words without adding to the edit cost). If they are not the same, however,
we consider each of the possible edits:
<levenshtein-neither-empty> ::=

else:

if s.first == t.first:

levenshtein(s.rest, t.rest)

else:

min3(

1 + levenshtein(s.rest, t),

1 + levenshtein(s, t.rest),

1 + levenshtein(s.rest, t.rest))

end

end

In the first case, we assume s has one too many characters, so we compute the
cost as if we’re deleting it and finding the lowest cost for the rest of the strings
(but charging one for this deletion); in the second case, we symmetrically assume
t has one too many; and in the third case, we assume one character got replaced
by another, so we charge one but consider the rest of both words (e.g., assume “s”
was typed for “k” and continue with “itten” and “itting”). This uses the following
helper function:

fun min3(a :: Number, b :: Number, c :: Number):

436 CHAPTER 28. ALGORITHMS THAT EXPLOIT STATE

num-min(a, num-min(b, c))

end

This algorithm will indeed pass all the tests we have written above, but with a
problem: the running time grows exponentially. That is because, each time we find
a mismatch, we recur on three subproblems. In principle, therefore, the algorithm
takes time proportional to three to the power of the length of the shorter word. In
practice, any prefix that matches causes no branching, so it is mismatches that incur
branching (thus, confirming that the distance of a word with itself is zero only takes
time linear in the size of the word).

Observe, however, that many of these subproblems are the same. For instance,
given “kitten” and “sitting”, the mismatch on the initial character will cause the
algorithm to compute the distance of “itten” from “itting” but also “itten” from
“sitting” and “kitten” from “itting”. Those latter two distance computations will
also involve matching “itten” against “itting”. Thus, again, we want the computa-
tion tree to turn into a DAG of expressions that are actually evaluated.

The solution, therefore, is naturally to memoize. First, we need a memoizer
that works over two arguments rather than one:

data MemoryCell2<T, U, V>:

| mem(in-1 :: T, in-2 :: U, out :: V)

end

fun memoize-2<T, U, V>(f :: (T, U -> V)) -> (T, U -> V):

var memory :: List<MemoryCell2<T, U, V>> = empty

lam(p, q):

answer = find(

lam(elt): (elt.in-1 == p) and (elt.in-2 == q) end,

memory)

cases (Option) answer block:

| none =>

result = f(p, q)

memory :=

link(mem(p, q, result), memory)

result

| some(v) => v.out

end

end

end

28.3. AVOIDING RECOMPUTATION BY REMEMBERING ANSWERS 437

Most of the code is unchanged, except that we store two arguments rather than one,
and correspondingly look up both.

With this, we can redefine levenshtein to use memoization:
<levenshtein-memo> ::=

rec levenshtein :: (List<String>, List<String> -> Number) =

memoize-2(

lam(s, t):

if is-empty(s) and is-empty(t): 0

else if is-empty(s): t.length()

else if is-empty(t): s.length()

else:

if s.first == t.first:

levenshtein(s.rest, t.rest)

else:

min3(

1 + levenshtein(s.rest, t),

1 + levenshtein(s, t.rest),

1 + levenshtein(s.rest, t.rest))

end

end

end)

where the argument to memoize-2 is precisely what we saw earlier as <levenshtein-
body> (and now you know why we defined levenshtein slightly oddly, not using
fun).

The complexity of this algorithm is still non-trivial. First, let’s introduce the
term suffix: the suffix of a string is the rest of the string starting from any point in
the string. (Thus “kitten”, “itten”, “ten”, “n”, and “” are all suffixes of “kitten”.)
Now, observe that in the worst case, starting with every suffix in the first word,
we may need to perform a comparison against every suffix in the second word.
Fortunately, for each of these suffixes we perform a constant computation relative
to the recursion. Therefore, the overall time complexity of computing the distance
between strings of length < and = is $ ([<, = → < · =]). (We will return to space
consumption later [section 28.3.5].)

Exercise

Modify the above algorithm to produce an actual (optimal) sequence of edit
operations. This is sometimes known as the traceback.

438 CHAPTER 28. ALGORITHMS THAT EXPLOIT STATE

Nature as a Fat-Fingered Typist

We have talked about how to address mistakes made by humans. However, humans
are not the only bad typists: nature is one, too!

When studying living matter we obtain sequences of amino acids and other
such chemicals that comprise molecules, such as DNA, that hold important and
potentially determinative information about the organism. These sequences consist
of similar fragments that we wish to identify because they represent relationships
in the organism’s behavior or evolution. Unfortunately, these sequences are neverThis section may need to be

skipped in some states and
countries.

identical: like all low-level programmers, nature slips up and sometimes makes
mistakes in copying (called—wait for it—mutations). Therefore, looking for strict
equality would rule out too many sequences that are almost certainly equivalent.
Instead, we must perform an alignment step to find these equivalent sequences.
As you might have guessed, this process is very much a process of computing
an edit distance, and using some threshold to determine whether the edit is small
enough. This algorithm is named, after its creators, Smith-Waterman, and becauseTo be precise, we are

performing local sequence
alignment.

it is essentially identical, has the same complexity as the Levenshtein algorithm.
The only difference between traditional presentations of Levenshtein and Smith-

Waterman is something we alluded to earlier: why is every edit given a distance
of one? Instead, in the Smith-Waterman presentation, we assume that we have
a function that gives us the gap score, i.e., the value to assign every character’s
alignment, i.e., scores for both matches and edits, with scores driven by biologi-
cal considerations. Of course, as we have already noted, this need is not peculiar
to biology; we could just as well use a “gap score” to reflect the likelihood of a
substitution based on keyboard characteristics.

Dynamic Programming

We have used memoization as our canonical means of saving the values of past
computations to reuse later. There is another popular technique for doing this called
dynamic programming. This technique is closely related to memoization; indeed,
it can be viewed as the dual method for achieving the same end. First we will see
dynamic programming at work, then discuss how it differs from memoization.

Dynamic programming also proceeds by building up a memory of answers,
and looking them up instead of recomputing them. As such, it too is a process
for turning a computation’s shape from a tree to a DAG of actual calls. The key
difference is that instead of starting with the largest computation and recurring to
smaller ones, it starts with the smallest computations and builds outward to larger
ones.

We will revisit our previous examples in light of this approach.

http://en.wikipedia.org/wiki/Creation_and_evolution_in_public_education
http://en.wikipedia.org/wiki/Creation_and_evolution_in_public_education
http://en.wikipedia.org/wiki/Sequence_alignment
http://en.wikipedia.org/wiki/Sequence_alignment

28.3. AVOIDING RECOMPUTATION BY REMEMBERING ANSWERS 439

Catalan Numbers with Dynamic Programming

To begin with, we need to define a data structure to hold answers. Following con-
vention, we will use an array. What happens when we run out

of space? We can use the
doubling technique we studied
for chapter 20.

MAX-CAT = 11

answers :: Array<Option<Number>> = array-of(none, MAX-CAT + 1)

Then, the catalan function simply looks up the answer in this array:

fun catalan(n):

cases (Option) array-get-now(answers, n):

| none => raise("looking at uninitialized value")

| some(v) => v

end

end

But how do we fill the array? We initialize the one known value, and use the
formula to compute the rest in incremental order:

fun fill-catalan(upper):

array-set-now(answers, 0, some(1))

when upper > 0:

for map(n from range(1, upper + 1)):

block:

cat-at-n =

for fold(acc from 0, k from range(0, n)):

acc + (catalan(k) * catalan(n - 1 - k))

end

array-set-now(answers, n, some(cat-at-n))

end

end

end

end

fill-catalan(MAX-CAT)

The resulting program obeys the tests in <catalan-tests>.
Notice that we have had to undo the natural recursive definition—which pro-

ceeds from bigger values to smaller ones—to instead use a loop that goes from
smaller values to larger ones. In principle, the program has the danger that when
we apply catalan to some value, that index of answers will have not yet been
initialized, resultingin an error. In fact, however, we know that because we fill all

440 CHAPTER 28. ALGORITHMS THAT EXPLOIT STATE

smaller indices in answers before computing the next larger one, we will never
actually encounter this error. Note that this requires careful reasoning about our
program, which we did not need to perform when using memoization because there
we made precisely the recursive call we needed, which either looked up the value
or computed it afresh.

Levenshtein Distance and Dynamic Programming

Now let’s take on rewriting the Levenshtein distance computation:
<levenshtein-dp> ::=

fun levenshtein(s1 :: List<String>, s2 :: List<String>):

<levenshtein-dp/1>

end

We will use a table representing the edit distance for each prefix of each word. That
is, we will have a two-dimensional table with as many rows as the length of s1 and
as many columns as the length of s2. At each position, we will record the edit
distance for the prefixes of s1 and s2 up to the indices represented by that position
in the table.

Note that index arithmetic will be a constant burden: if a word is of length =,
we have to record the edit distance to its =+1 positions, the extra one corresponding
to the empty word. This will hold for both words:
<levenshtein-dp/1> ::=

s1-len = s1.length()

s2-len = s2.length()

answers = array2d(s1-len + 1, s2-len + 1, none)

<levenshtein-dp/2>

Observe that by creating answers inside levenshtein, we can determine the ex-
act size it needs to be based on the inputs, rather than having to over-allocate or
dynamically grow the array.

We have initialized the table with none, so we will get an error if we acciden-
tally try to use an uninitialized entry. It will therefore be convenient to create helperWhich proved to be necessary

when writing and debugging
this code!

functions that let us pretend the table contains only numbers:
<levenshtein-dp/2> ::=

fun put(s1-idx :: Number, s2-idx :: Number, n :: Number):

answers.set(s1-idx, s2-idx, some(n))

end

fun lookup(s1-idx :: Number, s2-idx :: Number) -> Number:

a = answers.get(s1-idx, s2-idx)

28.3. AVOIDING RECOMPUTATION BY REMEMBERING ANSWERS 441

cases (Option) a:

| none => raise("looking at uninitialized value")

| some(v) => v

end

end

Now we have to populate the array. First, we initialize the row representing the
edit distances when s2 is empty, and the column where s1 is empty. At (0, 0), the
edit distance is zero; at every position thereafter, it is the distance of that position
from zero, because that many characters must be added to one or deleted from the
other word for the two to coincide:
<levenshtein-dp/3> ::=

for each(s1i from range(0, s1-len + 1)):

put(s1i, 0, s1i)

end

for each(s2i from range(0, s2-len + 1)):

put(0, s2i, s2i)

end

<levenshtein-dp/4>

Now we finally get to the heart of the computation. We need to iterate over
every character in each word. these characters are at indices 0 to s1-len - 1 and
s2-len - 1, which are precisely the ranges of values produced by range(0, s1-len)

and range(0, s2-len).
<levenshtein-dp/4> ::=

for each(s1i from range(0, s1-len)):

for each(s2i from range(0, s2-len)):

<levenshtein-dp/compute-dist>

end

end

<levenshtein-dp/get-result>

Note that we’re building our way “out” from small cases to large ones, rather than
starting with the large input and working our way “down”, recursively, to small
ones.

Do Now!

Is this strictly true?

No, it isn’t. We did first fill in values for the “borders” of the table. This is
because doing so in the midst of <levenshtein-dp/compute-dist> would be much

442 CHAPTER 28. ALGORITHMS THAT EXPLOIT STATE

more annoying. By initializing all the known values, we keep the core computation
cleaner. But it does mean the order in which we fill in the table is fairly complex.

Now, let’s return to computing the distance. For each pair of positions, we want
the edit distance between the pair of words up to and including those positions.
This distance is given by checking whether the characters at the pair of positions
are identical. If they are, then the distance is the same as it was for the previous
pair of prefixes; otherwise we have to try the three different kinds of edits:
<levenshtein-dp/compute-dist> ::=

dist =

if get(s1, s1i) == get(s2, s2i):

lookup(s1i, s2i)

else:

min3(

1 + lookup(s1i, s2i + 1),

1 + lookup(s1i + 1, s2i),

1 + lookup(s1i, s2i))

end

put(s1i + 1, s2i + 1, dist)

As an aside, this sort of “off-by-one” coordinate arithmetic is traditional when
using tabular representations, because we write code in terms of elements that are
not inherently present, and therefore have to create a padded table to hold values
for the boundary conditions. The alternative would be to allow the table to begin
its addressing from -1 so that the main computation looks traditional.

At any rate, when this computation is done, the entire table has been filled with
values. We still have to read out the answer, with lies at the end of the table:
<levenshtein-dp/get-result> ::=

lookup(s1-len, s2-len)

Even putting aside the helper functions we wrote to satiate our paranoia about
using undefined values, we end up with:As of this writing, the current

version of the Wikipedia page
on the Levenshtein distance
features a dynamic
programming version that is
very similar to the code above.
By writing in pseudocode, it
avoids address arithmetic issues
(observe how the words are
indexed starting from 1 instead
of 0, which enables the body of
the code to look more
“normal”), and by initializing
all elements to zero it permits
subtle bugs because an
uninitialized table element is
indistinguishable from a
legitimate entry with edit
distance of zero. The page also
shows the recursive solution
and alludes to memoization, but
does not show it in code.

fun levenshtein(s1 :: List<String>, s2 :: List<String>):

s1-len = s1.length()

s2-len = s2.length()

answers = array2d(s1-len + 1, s2-len + 1, none)

for each(s1i from range(0, s1-len + 1)):

put(s1i, 0, s1i)

end

for each(s2i from range(0, s2-len + 1)):

http://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=581406185#Iterative_with_full_matrix
http://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=581406185#Iterative_with_full_matrix
http://en.wikipedia.org/wiki/Levenshtein_distance
http://en.wikipedia.org/w/index.php?title=Levenshtein_distance&oldid=581406185#Recursive

28.3. AVOIDING RECOMPUTATION BY REMEMBERING ANSWERS 443

put(0, s2i, s2i)

end

for each(s1i from range(0, s1-len)):

for each(s2i from range(0, s2-len)):

dist =

if get(s1, s1i) == get(s2, s2i):

lookup(s1i, s2i)

else:

min3(

1 + lookup(s1i, s2i + 1),

1 + lookup(s1i + 1, s2i),

1 + lookup(s1i, s2i))

end

put(s1i + 1, s2i + 1, dist)

end

end

lookup(s1-len, s2-len)

end

which is worth contrasting with the memoized version (<levenshtein-memo>). For more examples of canonical
dynamic programming
problems, see this page and
think about how each can be
expressed as a direct recursion.

Contrasting Memoization and Dynamic Programming

Now that we’ve seen two very different techniques for avoiding recomputation,
it’s worth contrasting them. The important thing to note is that memoization is a
much simpler technique: write the natural recursive definition; determine its space
complexity; decide whether this is problematic enough to warrant a space-time
trade-off; and if it is, apply memoization. The code remains clean, and subsequent
readers and maintainers will be grateful for that. In contrast, dynamic program-
ming requires a reorganization of the algorithm to work bottom-up, which can
often make the code harder to follow and full of subtle invariants about boundary
conditions and computation order.

That said, the dynamic programming solution can sometimes be more com-
putationally efficient. For instance, in the Levenshtein case, observe that at each
table element, we (at most) only ever use the ones that are from the previous row
and column. That means we never need to store the entire table; we can retain
just the fringe of the table, which reduces space to being proportional to the sum,
rather than product, of the length of the words. In a computational biology setting

http://people.csail.mit.edu/bdean/6.046/dp/

444 CHAPTER 28. ALGORITHMS THAT EXPLOIT STATE

(when using Smith-Waterman), for instance, this saving can be substantial. This
optimization is essentially impossible for memoization.

In more detail, here’s the contrast:
Memoization Dynamic Programming
Top-down Bottom-up
Depth-first Breadth-first
Black-box Requires code reorganization
All stored calls are necessary May do unnecessary computation
Cannot easily get rid of unnecessary data Can more easily get rid of unnecessary data
Can never accidentally use an uninitialized answer Can accidentally use an uninitialized answer
Needs to check for the presence of an answer Can be designed to not need to check for the presence of an answer
As this table should make clear, these are essentialy dual approaches. What is
perhaps left unstated in most dynamic programming descriptions is that it, too,
is predicated on the computation always producing the same answer for a given
input—i.e., being a pure function.

From a software design perspective, there are two more considerations.
First, the performance of a memoized solution can trail that of dynamic pro-

gramming when the memoized solution uses a generic data structure to store the
memo table, whereas a dynamic programming solution will invariably use a cus-
tom data structure (since the code needs to be rewritten against it anyway). There-
fore, before switching to dynamic programming for performance reasons, it makes
sense to try to create a custom memoizer for the problem: the same knowledge em-
bodied in the dynamic programming version can often be encoded in this custom
memoizer (e.g., using an array instead of list to improve access times). This way,
the program can enjoy speed comparable to that of dynamic programming while
retaining readability and maintainability.

Second, suppose space is an important consideration and the dynamic program-
ming version can make use of significantly less space. Then it does make sense to
employ dynamic programming instead. Does this mean the memoized version is
useless?

Do Now!

What do you think? Do we still have use for the memoized version?

Yes, of course we do! It can serve as an oracle [section 17.4] for the dynamic
programming version, since the two are supposed to produce identical answers
anyway—and the memoized version would be a much more efficient oracle than
the purely recursive implemenation, and can therefore be used to test the dynamic
programming version on much larger inputs.

28.3. AVOIDING RECOMPUTATION BY REMEMBERING ANSWERS 445

In short, always first produce the memoized version. If you need more perfor-
mance, consider customizing the memoizer’s data structure. If you need to also
save space, and can arrive at a more space-efficient dynamic programming solu-
tion, then keep both versions around, using the former to test the latter (the person
who inherits your code and needs to alter it will thank you!).

Exercise

We have characterized the fundamental difference between memoization and
dynamic programming as that between top-down, depth-first and bottom-up,
breadth-first computation. This should naturally raise the question, what
about:

• top-down, breadth-first

• bottom-up, depth-first

orders of computation. Do they also have special names that we just happen
to not know? Are they uninteresting? Or do they not get discussed for a
reason?

446 CHAPTER 28. ALGORITHMS THAT EXPLOIT STATE

Part VII

Appendices

447

Chapter 29

Pyret for Racketeers and
Schemers

449

450 CHAPTER 29. PYRET FOR RACKETEERS AND SCHEMERS

Contents

If you’ve programmed before in a language like Scheme or the student levels
of Racket (or the WeScheme programming environment), or for that matter even
in certain parts of OCaml, Haskell, Scala, Erlang, Clojure, or other languages, you
will find many parts of Pyret very familiar. This chapter is specifically written to
help you make the transition from (student) Racket/Scheme/WeScheme (abbrevi-
ated “RSW”) to Pyret by showing you how to convert the syntax. Most of what we
say applies to all these languages, though in some cases we will refer specifically
to Racket (and WeScheme) features not found in Scheme.

In every example below, the two programs will produce the same results.

29.1 Numbers, Strings, and Booleans

Numbers are very similar between the two. Like Scheme, Pyret implements arbitrary-
precision numbers and rationals. Some of the more exotic numeric systems of
Scheme (such as complex numbers) aren’t in Pyret; Pyret also treats imprecise
numbers slightly differently.
RSWPyret
1 1

RSWPyret
1/2 1/2

RSW Pyret
#i3.14∼3.14

Strings are also very similar, though Pyret allows you to use single-quotes as
well.
RSW Pyret
"Hello, world!""Hello, world!"

RSW Pyret
"\"Hello\", he said""\"Hello\", he said"

RSW Pyret
"\"Hello\", he said"’"Hello", he said’

451

452 CONTENTS

Booleans have the same names:
RSWPyret
true true

RSW Pyret
falsefalse

29.2 Infix Expressions

Pyret uses an infix syntax, reminiscent of many other textual programming lan-
guages:
RSW Pyret
(+ 1 2)1 + 2

RSW Pyret
(* (- 4 2) 5)(4 - 2) * 5

Note that Pyret does not have rules about orders of precedence between opera-
tors, so when you mix operators, you have to parenthesize the expression to make
your intent clear. When you chain the same operator you don’t need to parenthe-
size; chaining associates to the left in both languages:
RSW Pyret
(/ 1 2 3 4)1 / 2 / 3 / 4

These both evaluate to 1/24.

29.3 Function Definition and Application

Function definition and application in Pyret have an infix syntax, more reminiscent
of many other textual programming languages. Application uses a syntax familiar
from conventional algebra books:
RSW Pyret
(dist 3 4)dist(3, 4)

Application correspondingly uses a similar syntax in function headers, and in-
fix in the body:
RSW Pyret

(define (dist x y)

(sqrt (+ (* x x)

(* y y))))

fun dist(x, y):

num-sqrt((x * x) +

(y * y))

end

29.4. TESTS 453

29.4 Tests

There are essentially three different ways of writing the equivalent of Racket’s
check-expect tests. They can be translated into check blocks:
RSW Pyret

(check-expect 1 1)

check:

1 is 1

end

Note that multiple tests can be put into a single block:
RSW Pyret

(check-expect 1 1)

(check-expect 2 2)

check:

1 is 1

2 is 2

end

The second way is this: as an alias for check we can also write examples.
The two are functionally identical, but they capture the human difference between
examples (which explore the problem, and are written before attempting a solution)
and tests (which try to find bugs in the solution, and are written to probe its design).

The third way is to write a where block to accompany a function definition.
For instance:

fun double(n):

n + n

where:

double(0) is 0

double(10) is 20

double(-1) is -2

end

These can even be written for internal functions (i.e., functions contained inside
other functions), which isn’t true for check-expect.

In Pyret, unlike in Racket, a testing block can contain a documentation string.
This is used by Pyret when reporting test successes and failures. For instance, try
to run and see what you get:

check "squaring always produces non-negatives":

(0 * 0) is 0

(-2 * -2) is 4

(3 * 3) is 9

end

454 CONTENTS

This is useful for documenting the purpose of a testing block.
Just as in Racket, there are many testing operators in Pyret (in addition to is).

See the documentation.

29.5 Variable Names

Both languages have a fairly permissive system for naming variables. While you
can use CamelCase and under_scores in both, it is conventional to instead use what
is known as kebab-case. Thus:This name is inaccurate. The

word “kebab” just means
“meat”. The skewer is the
“shish”. Therefore, it ought to
at least be called “shish kebab
case”.

RSW Pyret
this-is-a-namethis-is-a-name

Even though Pyret has infix subtraction, the language can unambiguously tell apart
this-name (a variable) from this - name (a subtraction expression) because the
- in the latter must be surrounded by spaces.

Despite this spacing convention, Pyret does not permit some of the more exotic
names permitted by Scheme. For instance, one can write

(define e^i*pi -1)

in Scheme but that is not a valid variable name in Pyret.

29.6 Data Definitions

Pyret diverges from Racket (and even more so from Scheme) in its handling of data
definitions. First, we will see how to define a structure:
RSW Pyret

(define-struct pt (x y))

data Point:

| pt(x, y)

end

This might seem like a fair bit of overkill, but we’ll see in a moment why it’s
useful. Meanwhile, it’s worth observing that when you have only a single kind of
datum in a data definition, it feels unwieldy to take up so many lines. Writing it on
one line is valid, but now it feels ugly to have the | in the middle:

data Point: | pt(x, y) end

Therefore, Pyret permits you to drop the initial |, resulting in the more readable

data Point: pt(x, y) end

Now suppose we have two kinds of points. In the student languages of Racket,
we would describe this with a comment:

https://www.pyret.org/docs/latest/testing.html
http://c2.com/cgi/wiki?KebabCase

29.7. CONDITIONALS 455

;; A Point is either

;; - (pt number number), or

;; - (pt3d number number number)

In Pyret, we can express this directly:

data Point:

| pt(x, y)

| pt3d(x, y, z)

end

In short, Racket optimizes for the single-variant case, whereas Pyret optimizes for
the multi-variant case. As a result, it is difficult to clearly express the multi-variant
case in Racket, while it is unwieldy to express the single-variant case in Pyret.

For structures, both Racket and Pyret expose constructors, selectors, and pred-
icates. Constructors are just functions:
RSW Pyret
(pt 1 2)pt(1, 2)

Predicates are also functions with a particular naming scheme:
RSW Pyret
(pt? x)is-pt(x)

and they behave the same way (returning true if the argument was constructed by
that constructor, and false otherwise). In contrast, selection is different in the two
languages (and we will see more about selection below, with cases):
RSW Pyret
(pt-x v)v.x

Note that in the Racket case, pt-x checks that the parameter was constructed by pt

before extracting the value of the x field. Thus, pt-x and pt3d-x are two different
functions and neither one can be used in place of the other. In contast, in Pyret,
.x extracts an x field of any value that has such a field, without attention to how
it was constructed. Thus, we can use .x on a value whether it was constructed by
pt or pt3d (or indeed anything else with that field). In contrast, cases does pay
attention to this distinction.

29.7 Conditionals

There are several kinds of conditionals in Pyret, one more than in the Racket stu-
dent languages.

General conditionals can be written using if, corresponding to Racket’s if but
with more syntax.
RSW Pyret

456 CONTENTS

(if full-moon

"howl"

"meow")

if full-moon:

"howl"

else:

"meow"

end

RSW Pyret

(if full-moon

"howl"

(if new-moon

"bark"

"meow"))

if full-moon:

"howl"

else if new-moon:

"bark"

else:

"meow"

end

Note that if includes else if, which makes it possible to list a collection of
questions at the same level of indentation, which if in Racket does not have. The
corresponding code in Racket would be written

(cond

[full-moon "howl"]

[new-moon "bark"]

[else "meow"])

to restore the indentation. There is a similar construct in Pyret called ask, designed
to parallel cond:

ask:

| full-moon then: "howl"

| new-moon then: "bark"

| otherwise: "meow"

end

In Racket, we also use cond to dispatch on a datatype:

(cond

[(pt? v) (+ (pt-x v) (pt-y v))]

[(pt3d? v) (+ (pt-x v) (pt-z v))])

We could write this in close parallel in Pyret:

ask:

| is-pt(v) then: v.x + v.y

29.8. LISTS 457

| is-pt3d(v) then: v.x + v.z

end

or even as:

if is-pt(v):

v.x + v.y

else if is-pt3d(v):

v.x + v.z

end

(As in Racket student languages, the Pyret versions will signal an error if no branch
of the conditional matched.)

However, Pyret provides a special syntax just for data definitions:

cases (Point) v:

| pt(x, y) => x + y

| pt3d(x, y, z) => x + z

end

This checks that v is a Point, provides a clean syntactic way of identifying the
different branches, and makes it possible to give a concise local name to each field
position instead of having to use selectors like .x. In general, in Pyret we prefer to
use cases to process data definitions. However, there are times when, for instance,
there many variants of data but a function processes only very few of them. In such
situations, it makes more sense to explicitly use predicates and selectors.

29.8 Lists

In Racket, depending on the language level, lists are created using either cons or
list, with empty for the empty list. The corresponding notions in Pyret are called
link, list, and empty, respectively. link is a two-argument function, just as in
Racket:
RSW Pyret
(cons 1 empty)link(1, empty)

RSW Pyret
(list 1 2 3)[list: 1, 2, 3]

Note that the syntax [1, 2, 3], which represents lists in many languages, is
not legal in Pyret: lists are not privileged with their own syntax. Rather, we must
use an explicit constructor: just as [list: 1, 2, 3] constructs a list, [set: 1, 2, 3]

constructs a set instead of a list. In fact, we can create our own
constructors and use them with
this syntax.

https://www.pyret.org/docs/latest/Expressions.html#%28part._s~3aconstruct-expr%29
https://www.pyret.org/docs/latest/Expressions.html#%28part._s~3aconstruct-expr%29

458 CONTENTS

Exercise

Try typing [1, 2, 3] and see the error message.

This shows us how to construct lists. To take them apart, we use cases. There
are two variants, empty and link (which we used to construct the lists):
RSW Pyret

(cond

[(empty? l) 0]

[(cons? l)

(+ (first l)

(g (rest l)))])

cases (List) l:

| empty => 0

| link(f, r) => f + g(r)

end

It is conventional to call the fields f and r (for “first” and “rest”). Of course, this
convention does not work if there are other things by the same name; in particular,
when writing a nested destructuring of a list, we conventionally write fr and rr

(for “first of the rest” and “rest of the rest”).

29.9 First-Class Functions

The equivalent of Racket’s lambda is Pyret’s lam:
RSW Pyret
(lambda (x y) (+ x y))lam(x, y): x + y end

29.10 Annotations

In student Racket languages, annotations are usually written as comments:

; square: Number -> Number

; sort-nums: List<Number> -> List<Number>

; sort: List<T> * (T * T -> Boolean) -> List<T>

In Pyret, we can write the annotations directly on the parameters and return values.
Pyret will check them to a limited extent dynamically, and can check them statically
with its type checker. The corresponding annotations to those above would be
written as

fun square(n :: Number) -> Number: ...

fun sort-nums(l :: List<Number>) -> List<Number>: ...

29.11. WHAT ELSE? 459

fun sort<T>(l :: List<T>, cmp :: (T, T -> Boolean)) -> List<T>: ...

Though Pyret does have a notation for writing annotations by themselves (anal-
ogous to the commented syntax in Racket), they aren’t currently enforced by the
language, so we don’t include it here.

29.11 What Else?

If there are other parts of Scheme or Racket syntax that you would like to see
translated, please let us know.

http://cs.brown.edu/~sk/Contact/

460 CONTENTS

Chapter 30

Pyret vs. Python

For the curious, we offer a few examples here to justify our frustration with Python
for early programming.
Python Pyret
Python exposes machine arithmetic by default. Thus, by default, 0.1 + 0.2 is not the same as 0.3. (We hope you’re not surprised to hear this.) Why this is the case is a fascinating subject of study, but we consistently find it a distraction for first-time programmers writing programs with arithmetic. And if we handwave the details of floating point aside, are we taking our claims of program reliability seriously?Pyret implements exact arithmetic, including rationals, by default. In Pyret, 0.1 + 0.2 really is equal to 0.3. Where a computation must return an inexact number, Pyret does it explicitly: a key requirement in a curriculum built on reliability.
Python Pyret
Understanding the difference between creating a variable and updating its value is a key learning outcome, along with understanding variables’ scopes. Python explicitly conflates declaration with update, and has a tangled history with scope.Pyret is statically scoped, and goes to great lengths—e.g., in the design of a query language for tables—to maintain it. There is no ambiguity in Pyret’s syntax for working with variables.
Python Pyret
Python has a weakly-defined, optional mechanism of annotations that was added late in the language’s design, which conflates values and types.Drawing on lessons learned from our several prior research projects on adding types to languages after-the-fact, Pyret was designed with typability from the start, with several subtle design choices to enable this. Pyret also has support (currently dynamic) for refinement-type annotations.
Python Pyret
Python has weak built-in support for testing. While it has extensive professional libraries to test software, these impose a non-trivial burden on learners, as a result of which most introductory curricula do not use them.First, a curriculum that proclaims reliability must put testing at its heart. Second, our pedagogy places heavy emphasis on the use of examples, and in particular the building-up of abstractions from concrete instances. For both these reasons, Pyret has extensive support in the language itself—not through optional, external libraries—for writing examples and tests, and provides direct language support for many of the interesting and tricky issues that arise when doing so.
Python Pyret
Images are not values in the language. You can write a program to produce an image, but you can’t just view it in your programming environment.Images are values. Pyret can print an image just like it can a string or a number (and why not?). Images are fun values, but they aren’t frivolous: they are especially useful for demystifying and explaining important but abstract issues like function composition.
Python Pyret
The language doesn’t have a built-in notion of reactive programs.Reactivity is a core concept in the language, and the subject of both design and implementation research.
Python Pyret
Python’s error messages are not added with novices as a primary audience.Novices make many errors. They can be especially intimidated by error reports, and can feel discouraged about causing errors. Thus, Pyret’s error messages are the result of nearly a decade of research. In fact, some educators have created pedagogic techniques that explicitly rely on the nature and presentation of information in Pyret’s errors.
Python Pyret
Python has begun to suffer from complexity creep that we believe serves professionals at the expense of novices. For example, the result of map in Python is actually a special generator value. This can lead to outcomes requiring extra explanation, like map(str, [1, 2, 3]) producing <map object at 0x1045f4940>. Type hints (discussed above) are another example.Since Pyret’s target audience is novice programmers programming in the style of this book, our primary goal when adding any feature is to preserve the early experience and avoid surprises.
Python Pyret
Data definitions are central to computer science, but Python over-relies on built-in data structures (especially dictionaries) and makes user-defined ones unwieldy to create.Pyret borrows from the rich tradition of languages like Standard ML, OCaml, and Haskell to provide algebraic datatypes, whose absence often forces programmers to engage in unwieldy (and inefficient) encoding tricks.
Python Pyret
Python has several more rough corners that can lead to unexpected and undesirable outcomes. For instance, = sometimes introduces new variables and sometimes rebinds them. A function where a student forgot to return a value doesn’t result in an error but silently returns None. Python has a complicated table that describes which values are true and which are false. And so on.Pyret is designed from the ground-up to avoid all these problems.

461

https://cs.brown.edu/~sk/Publications/Papers/Published/pmmwplck-python-full-monty/
https://twitter.com/joepolitz/status/1357751800795832321?s=20
https://cs.brown.edu/~sk/Publications/Papers/Published/ffkwf-mrspidey/
https://cs.brown.edu/~sk/Publications/Papers/Published/gsk-flow-typing-theory/
https://cs.brown.edu/~sk/Publications/Papers/Published/pqk-progressive-types/
https://cs.brown.edu/~sk/Publications/Papers/Published/pgk-sem-type-fc-member-name/
https://cs.brown.edu/~sk/Publications/Papers/Published/lpgk-tejas-type-sys-js/
https://cs.brown.edu/~sk/Publications/Papers/Published/plpk-reactor-design/
https://cs.brown.edu/~sk/Publications/Papers/Published/bnpkg-stopify/
https://cs.brown.edu/~sk/Publications/Papers/Published/mfk-measur-effect-error-msg-novice-sigcse/
https://cs.brown.edu/~sk/Publications/Papers/Published/mfk-mind-lang-novice-inter-error-msg/
https://cs.brown.edu/~sk/Publications/Papers/Published/wk-error-msg-classifier/
https://papl.cs.brown.edu/2020/growing-lang.html#%28part._design-space-cond%29

462 CHAPTER 30. PYRET VS. PYTHON

Chapter 31

Comparing This Book to HtDP

This book (DCIC) is often compared to How to Design Programs (HtDP), from
which it draws enormous inspiration. Here we briefly describe how the two books
compare.

At a high level they are very similar:

• Both are built around the centrality of data structure. Both want to provide
methods for designing programs. Both start with functional programming
but transition to (and take very seriously) stateful imperative programming.

• Both are built around languages carefully designed with education in mind.
The languages provide special support for writing examples and tests; error
reporting designed for beginners; built-in images and reactivity. The lan-
guages eschew weird gotchas (in a way that Python does not: see chapter 30
or, if you want to read much more, this paper.

and so on. To call these “similarities” is, however, a disservice. DCIC copied these
ideas from HtDP; in some cases, HtDP even pioneered them.

Now for the differences. Note that they are differences now. Some ideas from
DCIC are going to HtDP, and over time more may intermingle.

• The most obvious is that DCIC is in Pyret. HtDP has tons of good ideas,
all ignored because it Racket, whose syntax some people (especially some
educators) dislike. We built Pyret to embody good ideas we’d learned from
the Racket student languages and other good ideas of our own, but package
them in a familiar syntax. But as you can see, the two languages are not
actually that far apart: chapter 29.

• The next most obvious thing is that DCIC also includes Python. HtDP has a
(not formally published) follow-up that teaches program design in Java. In

463

https://www.htdp.org/
https://cs.brown.edu/~sk/Publications/Papers/Published/pmmwplck-python-full-monty/
https://felleisen.org/matthias/HtDC/htdc.pdf

464 CHAPTER 31. COMPARING THIS BOOK TO HTDP

contrast, we wanted to integrate the transition to Python into DCIC itself.
There’s much to be learned from the contrast! In particular, Pyret and its
environment were carefully designed around pedagogic ideas for teaching
state. Python was not, despite the ubiquity and difficulty of state! So there’s
a lot to be gained, when introducing state, to contrast them.

• Next, DCIC has a lot algorithmic content, whereas HtDP has almost none.
DCIC covers, for instance, Big-O analysis [chapter 18]. It even has a section
on amortized analysis [chapter 20]. It goes up through some graph algo-
rithms. This is far more advanced material than HtDP covers.

Those are most of the differences. They’re visible (some even evident) from glanc-
ing through the table of contents. However, there is one very deep difference that
will not be apparent to most readers, which we discuss below.

HtDP is built around a beautiful idea: the data structures shown grow in com-
plexity in set-theoretic terms. Therefore it begins with atomic data, then has fixed-
size data (structures), then unbounded collections (lists) of atomic data, pairs of
lists, lists of structures, and so on. All built up, systematically, in a neat progres-
sion.

However, this has a downside. You have to imagine what the data represent
(this number is an age, that string is a name, that list is of GDPs), but they’re
idealized. In a way the most real data are actually images! After that (which come
early), all the data are “virtualized” and imaginary.

Our view is that the most interesting data are lists of structures. (Remember
those? They’re complicated and come some ways down the progression.) You
might find this surprising; if so, we give you another name for them: tables. Tables
are ubiquitous. Even companies process and publish them; even primary school
students recognize and use them. They are perhaps our most important universal
form of structured data.

Even better, lots of real-world data are provided as tables. You don’t have to
imagine things or make up fake GDPs like 1, 2, and 3. You can get actual GDPs
or populations or movie revenues or sports standings or whatever interests you.
(Ideally, cleansed and curated.) We believe that just about every student—even
every child—is a nascent data scientist (at least when it’s convenient to them).
Even a child who says “I hate math” will often gladly use statistics to argue for
their favorite actor or sportsperson or whatever. We just have to find what motivates
them.

Buut there’s a big catch! A key feature of HtDP is that for every level of
datatype, it provides a Design Recipe for programming over that datatype. Lists-of-
structs are complex. So is their programming recipe. And we want to put them near
the beginning! Furthermore, the Design Recipe is dangerous to ignore. Students

465

struggle with blank pages and often fill them up with bad code, which they then get
attached to. The Design Recipe provides structure, scaffolding, reviewability, and
much more. It’s cognitively grounded in schemas.

So over the past few years, we’ve been working on different program design
methods that address the same ends through different means. A lot of our recent
education research has been putting new foundations in place. It’s very much work
in progress. And DCIC is the distillation of those efforts. As we have new results,
we’ll be weaving them into DCIC (and probably HtDP too). Stay tuned!

466 CHAPTER 31. COMPARING THIS BOOK TO HTDP

Chapter 32

Release Notes

This is a summary of updates made with each release of the book (excluding typos
and other minor fixes).

Version 2022-01-25

• Consistently renamed the definitions and interactions window to the defini-
tions and interactions pane.

• Moved the material on working with variables out of the intro to Python
section and into the Programming with State section. Mutation of structured
data moved before variable mutation within the Programming with State sec-
tion.

• Added a comparison between DCIC and HtDP.

• The include line for the DCIC libraries at this version is

include shared-gdrive(

"dcic-2021",

"1wyQZj_L0qqV9Ekgr9au6RX2iqt2Ga8Ep")

Version 2021-08-21 – the original release

467

468 CHAPTER 32. RELEASE NOTES

Chapter 33

Glossary

Rbandwidth

The bandwidth between two network nodes is the quantity of data that
can be transferred in a unit of time between the nodes.

Rcache

A cache is an instance of aNspace-time tradeoff : it trades space for
time by using the space to avoid recomputing an answer. The act of us-
ing a cache is called caching. The word “cache” is often used loosely;
we use it only for information that can be perfectly reconstructed even
if it were lost: this enables a program that needs to reverse the trade—
i.e., use less space in return for more time—to do so safely, knowing
it will lose no information and thus not sacrifice correctness.

Rcoinduction

Coinduction is a proof principle for mathematical structures that are
equipped with methods of observation rather than of construction.
Conversely, functions over inductive data take them apart; functions
over coinductive data construct them. The classic tutorial on the topic
will be useful to mathematically sophisticated readers.

Ridempotence

An idempotent operator is one whose repeated application to any value
in its domain yields the same result as a single application (note that
this implies the range is a subset of the domain). Thus, a function
5 is idempotent if, for all G in its domain, 5 (5 (G)) = 5 (G) (and by
induction this holds for additional applications of 5).

469

http://www.cs.ru.nl/~bart/PAPERS/JR.pdf

470 CHAPTER 33. GLOSSARY

Rinvariants

Invariants are assertions about programs that are intended to always
be true (“in-vary-ant”—never varying). For instance, a sorting routine
may have as an invariant that the list it returns is sorted.

Rlatency

The latency between two network nodes is the time it takes for packets
to go between the nodes.

Rmetasyntactic variable

A metasyntactic variable is one that lives outside the language, and
ranges over a fragment of syntax. For instance, if we write “for expres-
sions e1 and e2, the sum e1 + e2”, we do not mean the programmer
literally wrote “e1” in the program; rather we are using e1 to refer to
whatever the programmer might write on the left of the addition sign.
Therefore, e1 is metasyntax.

Rpacked representation

At the machine level, a packed representation is one that ignores tra-
ditional alignment boundaries (in older or smaller machines, bytes; on
most contemporary machines, words) to let multiple values fit inside
or even spill over the boundary.

For instance, say we wish to store a vector of four values, each of
which represents one of four options. A traditional representation
would store one value per alignment boundary, thereby consuming
four units of memory. A packed representation would recognize that
each value requires two bits, and four of them can fit into eight bits,
so a single byte can hold all four values. Suppose instead we wished
to store four values representing five options each, therefore requir-
ing three bits for each value. A byte- or word-aligned representation
would not fundamentally change, but the packed representation would
use two bytes to store the twelve bits, even permitting the third value’s
three bits to be split across a byte boundary.

Of course, packed representations have a cost. Extracting the values
requires more careful and complex operations. Thus, they represent a

classicNspace-time tradeoff : using more time to shrink space con-
sumption. More subtly, packed representations can confound certain
run-time systems that may have expected data to be aligned.

471

Rparsing

Parsing is, very broadly speaking, the act of converting content in one
kind of structured input into content in another. The structures could
be very similar, but usually they are quite different. Often, the input
format is simple while the output format is expected to capture rich
information about the content of the input. For instance, the input
might be a linear sequence of characters on an input stream, and the
output might be expected to be rich and tree-structured according to
some datatype: most program and natural-language parsers are faced
with this task.

Rreduction

Reduction is a relationship between a pair of situations—problems,
functions, data structures, etc.—where one is defined in terms of the
other. A reduction R is a function from situations of the form P to ones
of the form Q if, for every instance of P, R can construct an instance
of Q such that it preserves the meaning of P. Note that the converse
strictly does not need to hold.

Rspace-time tradeoff

Suppose you have an expensive computation that always produces the
same answer for a given set of inputs. Once you have computed the
answer once, you now have a choice: store the answer so that you can
simply look it up when you need it again, or throw it away and re-
compute it the next time. The former uses more space, but saves time;
the latter uses less space, but consumes more time. This, at its heart,
is the space-time tradeoff. Memoization [section 28.3] and using a

Ncache are both instances of it.

Rtype variable

Type variables are identifiers in the type language that (usually) range
over actual types.

Rwire format

A notation used to transmit data across, as opposed to within, a closed
platform (such as a virtual machine). These are usually expected to
be relatively simple because they must be implemented in many lan-
guages and on weak processes. They are also expected to be unam-
biguous to aid simple, fast, and correct parsing. Popular examples
include XML, JSON, and s-expressions.

	I Introduction
	1 Overview
	1.1 What This Book is About
	1.2 The Values That Drive This Book
	1.3 Our Perspective on Data
	1.4 What Makes This Book Unique
	1.5 Who This Book is For
	1.6 The Structure of This Book
	1.7 Organization of the Material
	1.8 Our Programming Language Choice
	1.9 Sending Feedback, Errors, and Comments

	2 Acknowledgments

	II Foundations
	3 Getting Started
	3.1 Motivating Example: Flags
	3.2 Numbers
	3.3 Expressions
	3.4 Terminology
	3.5 Strings
	3.6 Images
	Combining Images
	Making a Flag

	3.7 Stepping Back: Types, Errors, and Documentation
	Types and Contracts
	Format and Notation Errors
	Finding Other Functions: Documentation

	4 Naming Values
	4.1 The Definitions Pane
	4.2 Naming Values
	Names Versus Strings
	Expressions versus Statements

	4.3 The Program Directory
	Understanding the Run Button

	4.4 Using Names to Streamline Building Images

	5 From Repeated Expressions to Functions
	5.1 Example: Similar Flags
	5.2 Defining Functions
	How Functions Evaluate
	Type Annotations
	Documentation

	5.3 Functions Practice: Moon Weight
	5.4 Documenting Functions with Examples
	5.5 Functions Practice: Cost of pens
	5.6 Recap: Defining Functions

	6 Conditionals and Booleans
	6.1 Motivating Example: Shipping Costs
	6.2 Conditionals: Computations with Decisions
	6.3 Booleans
	Other Boolean Operations
	Combining Booleans

	6.4 Asking Multiple Questions
	6.5 Evaluating by Reducing Expressions
	6.6 Composing Functions
	How Function Compositions Evaluate
	Function Composition and the Directory

	6.7 Nested Conditionals
	6.8 Recap: Booleans and Conditionals

	7 Introduction to Tabular Data
	7.1 Creating Tabular Data
	7.2 Extracting Rows and Cell Values
	7.3 Functions over Rows
	7.4 Processing Rows
	Finding Rows
	Ordering Rows
	Adding New Columns
	Calculating New Column Values

	7.5 Examples for Table-Producing Functions

	8 Processing Tables
	8.1 Cleaning Data Tables
	Loading Data Tables
	Dealing with Missing Entries
	Normalizing Data
	Normalization, Systematically

	8.2 Task Plans
	8.3 Preparing Data Tables
	Creating bins
	Splitting Columns

	8.4 Managing and Naming Data Tables
	8.5 Visualizations and Plots
	8.6 Summary: Managing a Data Analysis

	9 From Tables to Lists
	9.1 Basic Statistical Questions
	9.2 Extracting a Column from a Table
	9.3 Understanding Lists
	Lists as Anonymous Data
	Creating Literal Lists

	9.4 Operating on Lists
	Built-In Operations on Lists of Numbers
	Built-In Operations on Lists in General
	An Aside on Naming Conventions
	Getting Elements By Position
	Transforming Lists
	Recap: Summary of List Operations

	9.5 Lambda: Anonymous Functions
	9.6 Combining Lists and Tables

	10 Processing Lists
	10.1 Making Lists and Taking Them Apart
	10.2 Some Example Exercises
	10.3 Structural Problems with Scalar Answers
	my-len: Examples
	my-sum: Examples
	From Examples to Code

	10.4 Structural Problems that Transform Lists
	my-doubles: Examples and Code
	my-str-len: Examples and Code

	10.5 Structural Problems that Select from Lists
	my-pos-nums: Examples and Code
	my-alternating: Examples and Code

	10.6 Structural Problems Over Relaxed Domains
	my-max: Examples
	my-max: From Examples to Code

	10.7 More Structural Problems with Scalar Answers
	my-avg: Examples

	10.8 Structural Problems with Accumulators
	my-running-sum: First Attempt
	my-running-sum: Examples and Code
	my-alternating: Examples and Code

	10.9 Dealing with Multiple Answers
	uniq: Problem Setup
	uniq: Examples
	uniq: Code
	uniq: Reducing Computation
	uniq: Example and Code Variations
	uniq: Why Produce a List?

	10.10 Monomorphic Lists and Polymorphic Types

	11 Introduction to Structured Data
	11.1 Understanding the Kinds of Compound Data
	A First Peek at Structured Data
	A First Peek at Conditional Data

	11.2 Defining and Creating Structured and Conditional Data
	Defining and Creating Structured Data
	Annotations for Structured Data
	Defining and Creating Conditional Data

	11.3 Programming with Structured and Conditional Data
	Extracting Fields from Structured Data
	Telling Apart Variants of Conditional Data
	Processing Fields of Variants

	12 Collections of Structured Data
	12.1 Lists as Collective Data
	12.2 Sets as Collective Data
	Picking Elements from Sets
	Computing with Sets

	12.3 Combining Structured and Collective Data
	12.4 Data Design Problem: Representing Quizzes

	13 Recursive Data
	13.1 Functions to Process Recursive Data
	13.2 A Template for Processing Recursive Data

	14 Trees
	14.1 Data Design Problem – Ancestry Data
	Computing Genetic Parents from an Ancestry Table
	Computing Grandparents from an Ancestry Table
	Creating a Datatype for Ancestor Trees

	14.2 Programs to Process Ancestor Trees
	14.3 Summarizing How to Approach Tree Problems
	14.4 Study Questions

	15 Functions as Data
	15.1 A Little Calculus
	15.2 A Helpful Shorthand for Anonymous Functions
	15.3 Streams From Functions
	15.4 Combining Forces: Streams of Derivatives

	16 Interactive Games as Reactive Systems
	16.1 About Reactive Animations
	16.2 Preliminaries
	16.3 Version: Airplane Moving Across the Screen
	Updating the World State
	Displaying the World State
	Observing Time (and Combining the Pieces)

	16.4 Version: Wrapping Around
	16.5 Version: Descending
	Moving the Airplane
	Drawing the Scene
	Finishing Touches

	16.6 Version: Responding to Keystrokes
	16.7 Version: Landing
	16.8 Version: A Fixed Balloon
	16.9 Version: Keep Your Eye on the Tank
	16.10 Version: The Balloon Moves, Too
	16.11 Version: One, Two, ..., Ninety-Nine Luftballons!

	17 Examples, Testing, and Program Checking
	17.1 From Examples to Tests
	17.2 More Refined Comparisons
	17.3 When Tests Fail
	17.4 Oracles for Testing

	III Algorithms
	18 Predicting Growth
	18.1 A Little (True) Story
	18.2 The Analytical Idea
	18.3 A Cost Model for Pyret Running Time
	18.4 The Size of the Input
	18.5 The Tabular Method for Singly-Structurally-Recursive Functions
	18.6 Creating Recurrences
	18.7 A Notation for Functions
	18.8 Comparing Functions
	18.9 Combining Big-Oh Without Woe
	18.10 Solving Recurrences

	19 Sets Appeal
	19.1 Representing Sets by Lists
	Representation Choices
	Time Complexity
	Choosing Between Representations
	Other Operations

	19.2 Making Sets Grow on Trees
	Converting Values to Ordered Values
	Using Binary Trees
	A Fine Balance: Tree Surgery

	20 Halloween Analysis
	20.1 A First Example
	20.2 The New Form of Analysis
	20.3 An Example: Queues from Lists
	List Representations
	A First Analysis
	More Liberal Sequences of Operations
	A Second Analysis
	Amortization Versus Individual Operations

	20.4 Reading More

	21 Sharing and Equality
	21.1 Re-Examining Equality
	21.2 The Cost of Evaluating References
	21.3 Notations for Equality
	21.4 On the Internet, Nobody Knows You're a DAG
	21.5 It's Always Been a DAG
	21.6 From Acyclicity to Cycles

	22 Graphs
	22.1 Understanding Graphs
	22.2 Representations
	Links by Name
	Links by Indices
	A List of Edges
	Abstracting Representations

	22.3 Measuring Complexity for Graphs
	22.4 Reachability
	Simple Recursion
	Cleaning up the Loop
	Traversal with Memory
	A Better Interface

	22.5 Depth- and Breadth-First Traversals
	22.6 Graphs With Weighted Edges
	22.7 Shortest (or Lightest) Paths
	22.8 Moravian Spanning Trees
	The Problem
	A Greedy Solution
	Another Greedy Solution
	A Third Solution
	Checking Component Connectedness

	IV From Pyret to Python
	23 From Pyret to Python
	23.1 Expressions, Functions, and Types
	23.2 Returning Values from Functions
	23.3 Examples and Test Cases
	23.4 An Aside on Numbers
	23.5 Conditionals
	23.6 Creating and Processing Lists
	Filters, Maps, and Friends

	23.7 Data with Components
	Accessing Fields within Dataclasses

	23.8 Traversing Lists
	Introducing For Loops
	Using For Loops in Functions that Produce Lists
	Summary: The List-Processing Template for Python

	V Programming with State
	24 Modifying Structured Data
	24.1 Modifying Fields of Structured Data
	24.2 Modifications to Shared Data
	24.3 Understanding Memory
	24.4 Variables and Equality
	24.5 Basic Data in Memory

	25 Modifying Variables
	25.1 Modifying Variables in Memory
	25.2 Modifying Variables Associated with Lists
	25.3 Writing Functions that Modify Variables
	The global annotation

	25.4 Testing Functions that Modify global Variables
	The Internal Structure of a Test Function
	Takeaways on Testing Modifications

	26 Revisiting Lists and Variables
	26.1 Sharing List Updates
	Operations that Mutate Lists

	26.2 Lists in Memory
	26.3 Practice: Data for Shared Bank Accounts
	26.4 Circular References
	Testing Circular Data
	Revisiting Variables: A Function to Create Accounts for New Customers

	26.5 The Many Roles of Variables
	26.6 Managing All Accounts

	27 Hashtables and Dictionaries
	27.1 Searching by Criteria Other than Keys
	27.2 Dictionaries with More Complex Values
	27.3 Using Structured Data as Keys

	VI Advanced Topics
	28 Algorithms That Exploit State
	28.1 Disjoint Sets Redux
	Optimizations
	Analysis

	28.2 Set Membership by Hashing Redux
	Improving Access Time
	Better Hashing
	Bloom Filters

	28.3 Avoiding Recomputation by Remembering Answers
	An Interesting Numeric Sequence
	Edit-Distance for Spelling Correction
	Nature as a Fat-Fingered Typist
	Dynamic Programming
	Contrasting Memoization and Dynamic Programming

	VII Appendices
	29 Pyret for Racketeers and Schemers
	29.1 Numbers, Strings, and Booleans
	29.2 Infix Expressions
	29.3 Function Definition and Application
	29.4 Tests
	29.5 Variable Names
	29.6 Data Definitions
	29.7 Conditionals
	29.8 Lists
	29.9 First-Class Functions
	29.10 Annotations
	29.11 What Else?

	30 Pyret vs. Python
	31 Comparing This Book to HtDP
	32 Release Notes
	33 Glossary

